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Abstract

This dissertation aims to contribute to the knowledge of the effect of the addition of particles in the
transition to turbulence of pipe flows. The following work studied, to this end, the linear stability
of a particulate pipe flow where the solid phase is modelled with an Eulerian formulation and the
system resolved using of an eigenvalue solver. This work has been extended to a linear transient
growth analysis, with the same physical model and solid phase formulation. The transient growth
analysis has been conducted with a linear Direct Numerical Simulation code. An iterative variational
method has been used to obtain the flow transient growth. The last part of this work considers a point
particle model using a mixed Eulerian-Lagrangian formulation, where the fluid phase is described
with a standard Eulerian formulation while the solid phase behaviour is determined through particle
Lagrangian tracking. This allows for a nonlinear analysis of the particulate flow, done with a DNS
code. The linear stability analysis showed that the addition of particles can lead to linear instability at
experimentally realistic parameters, as opposed to the single phase pipe flow which is linearly stable
for all Reynolds numbers. This thesis also highlights the important role of the particles size on the
flow stability. Smaller particles have a destabilising effect on the flow stability while the effect is
inverted as particles become larger. Another critical parameter is the distribution of particles across the
pipe, in particular across the particle radius. The effect of the particles on the flow stability is stronger
when they are concentrated closer to the Segré-Silberberg radius. In particular, linear instability has
only been observed when particles are concentrated in an annulus whose position is close to the
Segré-Silberberg radius. The flow transient growth is also significantly increased by the addition
of particles, in particular for, again, particles concentrated close to the Segré-Silberberg radius, for
which the transient growth can be more than tripled compared to the case of the single phase flow.
Moreover, we found with the point particle model a tendency for medium-sized particles to migrate
and accumulate close to the wall, where their effect on the flow stability is larger.
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General introduction

Most flows can be classified in two categories – laminar and turbulent – with completely different
properties and very distinct characteristics. Laminar flows are viscosity-dominated, have no lateral
mixing, small gradients and are characterised by weak dissipation and slow diffusion. Examples of
laminar flows are a flow of honey, a highly viscous fluid, a slow stream out of a nozzle. Laminar
flows have simple structures and show little complexity, such that they behave in a deterministic way
and are predictable. On the other hand, turbulent flows are characterised by a more complex, chaotic
and unpredictable behaviour with multiscale vortices interacting with each other. Turbulent flows are
dominated by advection and Reynolds stress. Turbulent flows are common, and typical examples
of turbulent structures are torrents, the flow behind an obstacle (airplane wing, bridge pillar) or jets.
Turbulent structures produce strong pressure and velocity gradients. Mixing occurs very rapidly in
turbulent flows, this can be easily observed by dropping an ink droplet in a turbulent flow, and the
dissipation rate of energy is much larger than in the laminar case.

Because laminar and turbulent flows have very different properties, it is often of critical importance
to know the conditions leading to the transition from one to the other, in environmental flows as well as
in more exotic cases, such as the flow inside the earth liquid core or stars. It is also of importance in the
industrial sector with widespread potential applications: cars and planes aerodynamics performances
have been, for example, improved by using more streamlined, aerodynamically efficient shapes which
delay the onset of turbulence. The efficiency of fuel combustion is strongly dependent on the flow
state, and the drag and friction in water and oil pipes is increased when the flow is turbulent. Transition
to turbulence has therefore been a major topic of study for over a century. It is a complex, nonlinear
chaotic problem still far from being understood today.

Transition to turbulence is generally studied through stability analysis. A stability analysis is the
study of the effect of a perturbation on a steady laminar flow, namely whether this perturbation leads
to a transition of the flow to a turbulent state or dies out eventually. The majority of the research done
on stability focuses on single phase flows. However, real flows often are multiphase, further adding
complexity to the topic of the transition to turbulence. This work focuses on a subset of multiphase
flows: particulate flows, also called particle-laden flows. Particulate flows have a carrier phase, either
liquid or gas, which is seeded by solid particles. Particulate flow relate to a wide range of applications,
notably in the oil industry with the prevalence of oil and gas flows. Oil and gas flows contains solid
impurities, such as sand, such that they combine fluid, gas and solid phases. Oil and gas flows are
extremely difficult, with the current methods, to model. Modelling them as particulate flows allows to
capture most of the dynamics while simplifying the problem. They are also frequently encountered in
biofluid dynamics: blood is considered as a particulate flow, with red and white blood cells acting as
particles of up to 40% of volume fraction, particulate flows have also been used to study the behaviour
of self-propelled cells in the organism. In the case of environmental flows, examples of particulate
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flows are found in rivers with transport of sediments as well as debris flows. Atmospheric pollution is
due to the ejection of particles while the dynamics of droplets are key to rain and snow formation.

Pipe flows are a classical problem and a major area of research in fluid dynamics due to its
significance as a subset of more general wall-bounded problems. The relative simplicity of the
geometry, suitable to experimentation as well as its relevance to industry and engineering makes it
one of the widely studied geometry. The interest in pipe flows also extends to particulate flows in the
case of pipelines for oil and gas flows, and pipes are in general widely used in the industry. Another
example is the blood flows in arteries. We have chosen, for these reasons, to focus in this work on
pipe flow geometry.

One of the challenges regarding particulate flow is the need to accurately measure flow rates
or volume fractions in complex fluid mixtures flowing through pipes; this issue concerns a wide
range of industrial fields. Examples range from the precise determination of the volume fraction
of oil in the oil-water-sand-gas mixture that is extracted from offshore wells, to needs in the food
processing industry due to the large range of liquids conditions encountered, and flows of molten
metal carrying impurities during recycling processes. In all these examples, the nature of the flow
state needs to be determined to make accurate measurements; in particular, one needs to know whether
the flow is turbulent. Having an estimate of the flow state as a function of its characteristics can prove
indispensable when determining the pipe size or motor power that best suits requirements. Particulate
pipe flows, including their transition to turbulence, are therefore attracting a growing interest from
the scientific community. The addition of particles to the flow can have different effects on the
flow stability depending on the particles parameters, such as size, shape, their volume concentration,
whether they are neutrally buoyant or not, and whether they are monodisperse or polydisperse. In
addition, parameters such as the pipe dimensions and roughness, the flow velocity and the fluid
properties (viscosity and density) affects the flow stability.

The stability of particulate pipe flows is a problem that traverses several scientific fields. The
complexity of this problem, coupled with the large range of parameters for both fluid and particles,
contributes to making the issue of transition to turbulence in particulate flows outstandingly difficult to
characterise entirely. It is therefore unsurprising that the knowledge accumulated so far is fragmented,
with most of the work available in literature focusing on very specific aspects of the problem, that are
difficult to generalise. The aim of this thesis is to further the understanding of how the stability of
pipe flows is affected by the additions of particles by providing a more general groundwork using
simplified models for the description of the solid phase.

The following work is solely numerical, it is however complemented by an experimental project on
particulate pipe flows conducted in the the Fluid and Complex Systems Research Center at Coventry
University. This work partly focuses on linearised particulate flows. The linear stability of single
phase flows has been extensively studied, which allows for extensive comparison when considering
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particulate flows. It is also a good starting point for categorising how the transition between laminar
and turbulent states is affected by particles. This manuscript presents a nonlinear model built with the
aim to obtain results even in the cases affected by the limitations of linear analysis. Another critical
choice is the model used to describe the particles, two models have been used: a fully Eulerian method
with an Eulerian formulation for the particles, and a point particle model with Lagrangian tracking.
Using two models with distinct capabilities and limitations increases the range of results obtainable.

This dissertation is composed of four chapters, starting with an overview of the concepts involved
in this work in Chapter 1: theoretical knowledge of the fluid and solid phases description, the
modelling of particulate flows, the basic tenets of flows stability and transition to turbulence as well
as the numerical methods allowing the study of stability. Chapter 2 describes the linear stability of a
particulate pipe flow using an Eulerian formulation for the particles, with a focus on the impact of
the particles relaxation time, volume concentration and radial distribution. Chapter 3 expands the
previous chapter work with a transient growth analysis with the same model. In the last chapter is
developed a more elaborate model for the solid phase using a point particle approximation with the
objective of studying individual particle behaviour.



Chapter 1

Literature overview

This project lies at the intersection between transition to turbulence and particulate flow and the study
is conducted through numerical means. We will give in this chapter an overview of the concepts
involved in this work. First, with a short reminder on single phase flow and the assumptions made on
the fluid, then is presented a summary of the theoretical knowledge concerning the ways particles are
affected by the surrounding fluid. followed by a look at the existing models for the description of
particulate flows. In a second time is given an overview of the knowledge concerning the transition
between laminar and turbulent phases for single phase flows; following with the existing results for the
transition of particulate flows. Finally, the chapter is concluded with the experimental and numerical
tools available to study these topics.

1.1 Single phase flows dynamics

Theoretical models describing particulate flows are generally built upon single phase flows models,
this is true for our work as well. Applying Newton’s second law on a closed domain, one can derive the
equation of the conservation of momentum describing the motion of viscous flows, the Navier-Stokes
equations. The conservation of mass yields:

∂ρ

∂ t
= ∇ · (ρu) , (1.1)

as for the conservation of momentum,

∂ (ρu)
∂ t

+∇ · (ρu×u) =−∇p+∇ · τ +F , (1.2)

where u is the fluid velocity, ρ its density and p the flow pressure. τ is the Cauchy stress tensor and F
the volumetric forces applying on the flow, for example gravity or the effect of particles. This work
focuses in the case of an incompressible Newtonian flow. For Newtonian flows the Cauchy stress
tensor is equal to (µ∇u) with µ the dynamic viscosity. Incompressible flows have a constant density,
mathematically this translates to ∂tρ = ∇ρ = 0.

Equations (1.1) and (1.2) are, in the specific case of an incompressible, Newtonian flow, rewritten as:

∇ ·u = 0 , (1.3)

ρ

(
∂u
∂ t

+(u ·∇)u
)
=−∇p+µ∇

2u+F . (1.4)
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1.2 Fluid-particle dynamics

1.2.1 Fluid-particle coupling for a single particle

The fluid affects the particle through several physical mechanisms each applying a force on the
particle, the motion of a particle in the flow can be written as a the sum of these forces Fi,

mp
dup

dt
= ∑Fi , (1.5)

where up is the velocity of the particle. d/dt = ∂t + up ·∇ is the time derivative in the particle
reference frame. The main forces acting on a spherical particle are as follows:

• Effect of the undisturbed flow: The particle is affected by the undisturbed flow pressure field and
shear stress, the pressure force acting on a particle is, assuming a constant pressure gradient over the
particle,

Fp =−Vp ∇p , (1.6)

with Vp the particle volume and ρ the fluid density. The force on the particle due to the shear stress
Fsh is

Fsh =−Vp ρ ∇ · τ =Vp µ ∇
2u , (1.7)

with u the surrounding fluid velocity. The sum of the forces Fp and Fsh is equal to

Fp +Fsh = mp
Du
Dt

, (1.8)

with D/Dt = ∂t +u ·∇ , the time derivative with regards to the fluid.

• Virtual mass force: the surrounding fluid is displaced by the particles, causing a drag proportional
to the volume,

Fvm =
ρVp

2
d
dt

(
up −u− a2

10
∇

2u
)

, (1.9)

with a, the radius of the particle.

• Stokes drag force: The Stokes drag corresponds to the viscous drag caused by the difference in
velocity between the particle and the surrounding fluid.
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Maxey and Riley (1983) give:

FSt = 6πaµ

(
up −u− a2

6
∇

2u
)

, (1.10)

with a being the particle radius. The Laplacian term is the Faxen correction term added to account for
the effect of the velocity curvature at low Reynolds number. A more general equation for the drag
force is:

FD =
CD

2
πa2

ρ (up −u) , (1.11)

where CD is the drag coefficient.

• Buoyancy force: Caused by a density difference between the fluid and the particle:

FB = (ρp −ρ f )
4
3

πa3geg , (1.12)

where a is the particle radius, ρp its density and ρ f the surrounding fluid density.

• Basset history force: It is another drag force, derived in Basset (1961). It describes the past effect
of the particle on the flow due to the lagging boundary layer development caused by the changing
relative velocity of bodies moving through a fluid, it is often added in models where the particles
action on the fluid is not calculated in order to compensate for the past particle action on the fluid and
its effect on the current particle velocity. It can be written as:

Fbas =−6πa2
µ

ˆ t

0
dτ

dτ

[
up(τ)−u(τ)− a2

6 ∇2u
]

[πν(t − τ)]1/2

 . (1.13)

• Saffman lift force: Velocity gradient in the flow causes a pressure differential which results on a lift
force on the particle, first considered in Saffman (1965):

FSaf = 1.61a2 (µρ)1/2 (∇×u)−1/2 [(u−up)×∇×u] . (1.14)

The direction of the Saffman lift force depends on the velocity difference between the particle and
the fluid. In the case of a pipe, if (u−up) > 0 the force is directed towards the highest velocity,
corresponding to the centre of the pipe. If (u− up) < 0 the force is directed towards the lowest
velocity, in the direction of the wall.

• Magnus force: corresponding to a lift force created by the particle rotation (Rubinow and Keller,
1961):

FMag = πa3
ρ [(0.5∇×u−ωp)× (u−up)] . (1.15)



20 Literature overview

1.2.2 Particle rotation rate

The rotation of the particles is one of the key elements of particulate flows dynamics. The rotation
rate ω of a particle follows the equation:

dIω

dt
+ω × Iω = T , (1.16)

with I as the particle moment of inertia and T its torque. The moment of inertia of a spherical object
is constant, I = 2mpa2

5 , therefore in the case of spherical particles ω × Iω = 0. Equation (1.16) then
becomes:

I
dω

dt
= T . (1.17)

The torque due to the action of the fluid on a particle is

T =

ˆ

∂V

r×σT n̂dS , (1.18)

where ∂V is the surface of the particle, σT the stress tensor and n̂ a normalised vector direction
orthogonal to the particle surface. The stress tensor of a Newtonian fluid is,

σi j =−pδi j +µ

(
∂ui

∂x j
+

∂u j

∂xi

)
, (1.19)

where p is the pressure, µ the dynamic viscosity and δi j the Kronecker delta.

1.3 Particle modelling through modification of Navier-Stokes equation

Particulate flows are complex physical structures with a large number of parameters to consider, such
as particle and fluid densities, particles size, rate of collision and aggregation among other things. To
the complexity of the dynamics involved is added the inherent difficulty of considering, theoretically
or numerically, a large number of independent objects. Particulate flows cannot realistically be exactly
described, they need to be studied through a model making assumptions and approximations in order
to simplify the problem while keeping as much as the underlying dynamics as possible. A number of
models with a wide range of characteristics and physical assumptions have been developed during
the last few decades, they can be classified into three general categories: modification of the fluid
phase equations of motion, Eulerian modelling of the particles phase and Lagrangian tracking models.
Another important characteristic is the way fluid and particles are coupled, one can characterise three
levels of interaction between the fluid and particle phase of the model:
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• Four-way coupling models have the fluid and particles fully coupled. Particle-particle interac-
tions, notably collisions, are also included.

• Two-way coupling models neglect particle-particle interactions but the fluid and particles are
still fully coupled.

• One-way coupling models, in this case the coupling is injective, either the fluid affects the
particles, or the particles the fluid, there is no feedback.

The best suited model depends on the phenomenon studied and the degree of accuracy required,
with a trade-off between how detailed a model is and the cost of computational cost associated. A
non-exhaustive list of the main particulate flow models is given in Sections 1.3-1.5.
One of the simplest models is the dusty gas approach developed by Marble (1970). The model
assumes small particles with a short relaxation time so that they act as tracer and follow the fluid
perfectly. Thus the flow can be treated as a single fluid whose density varies as a function of the local
particle concentration. The evolution of the flow can be described with a single equation of motion:

∂tu+u ·∇u =− ∇ p
(1+κ)ρ

+
∇ · τ

(1+κ)ρ
, (1.20)

with u the fluid velocity, p the pressure, ρ the fluid density, τ the viscous stress tensor and κ = ρp/ρ

the ratio between the particle and fluid densities. Marble (1970) assumes a uniform particle distribution,
resulting in κ held constant. In the limit κ → 0, the model retrieves the single phase flow equation of
motion. Its simplicity make the dusty gas approach model straightforward to apply, but the validity of
the results is limited due to the assumptions made are only valid in the small particles limit. Further, it
does not take into account any of the particles characteristics except their density.

Using a similar concept as the dusty gas model, suspension rheology uses a variable apparent
dynamic viscosity µs(φ), with φ =Vp/Vf the particle volume concentration. µs is generally norm-
alised by the viscosity of the single phase flow, such that the parameter worked with is µr = µs/µ0.
Extensive work has been done on the topic, one can find a comprehensive literature review by Mueller
et al. (2009). Different functions for the dynamic viscosity are used in function of the solid volume
fraction. For the dilute regime, when φ < 10−2, the viscosity depends on the density in a linear
fashion (Einstein, 1911). For semi-dilute flows, 10−2 < φ < 0.25, polynomial fits are used (Vand,
1948). In the case of dense flows (φ > 0.25), more complex laws are used (Krieger, 1972; Mooney,
1951; Van den Brule and Jongschaap, 1991) Suspension rheology is a flexible method and has been
adapted to many cases. In fact this model is, in spite of its limitations, one of the few permitting the
study of non Newtonian particulate flows and non-spherical particles without a model for individual
particles. Even so, because suspension rheology models presented in this section do not directly
represent the particles, they are limited in scope as they do not give information about the behaviour
of the particles.



22 Literature overview

1.4 Eulerian description models for particulate flows

Eulerian models make the continuity assumption for the solid phase, such that the solid phase can be
characterised as a continuous medium rather than as an ensemble of distinct objects. This assumption
still allows for a direct description of the particles instead of the indirect approach where the effect of
the solid phase on the solid flow is computed through the modification of the fluid parameters, as seen
in the previous section. A single equation of motion can be derived to describe the evolution of the
solid phase characteristics, generally its velocities and local concentration, in an Eulerian frame of
reference, using the conservation of the total particle mass and momentum.

1.4.1 Equilibrium Eulerian model

The equilibrium Eulerian approach has been first considered in De La Mora and Rosner (1981),
developed in Ferry and Balachandar (2001) and improved in Ferry et al. (2003). The particles are
described directly rather than through modifying a parameter of the fluid or its equation of motion.
The model is one-way coupled i.e. the particle motion only depends on the surrounding fluid while
the influence of the particles on the fluid is neglected. The particle velocity up is described by the
following equation:

up = u+Up −St(1−β )
Du
Dt

+Up ·∇u , (1.21)

where u is the velocity of the surrounding fluid and Up the particle settling velocity, β = 3/(2ρ +1)
the density ratio parameter with ρ = ρp/ρ f . St is the Stokes number representing the ratio between
the particles and Kolmogorov timescales defined as:

St =
τp

τk
=

2a2ρt

9 µ φ(Re)τk
, (1.22)

where a is the particle radius, µ the kinematic viscosity of the fluid and φ(Re) = 1+0.15Re0.687 is the
correction coefficient function of the Reynolds number. The equilibrium Eulerian model is expected
to produce accurate results when the Stokes number is small and the particles closely follow the fluid
trajectory, but loses its validity as the relaxation time of the particles increases. Ferry and Balachandar
(2001) compared the Equilibrium Eulerian model to a more sophisticated model using Lagrangian
particle tracking to model the particles trajectories, similar to the ones mentioned in Section 1.5.1.
They found that the results obtained using the Equilibrium Eulerian model were consistent with the
point particle model results up to St = 0.2. The equilibrium Eulerian model, while it captures a
broader range of the particulate flow mechanisms compared to the models presented in Section 1.3,
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including particles preferential concentrations. Nonetheless it is still one-way coupled and therefore
does not account for the feedback of the particles on the fluid, limiting its scope.

1.4.2 Fully Eulerian approach

The study of the particles influence on stability requires, at a minimum, a two-way coupling model. An
example of such model is the fully Eulerian model, early examples can be found in Di Giacinto et al.
(1982) and Durst et al. (1984). The fluid and solid phases are treated as two inter-penetrating media.
Two additional equations describe the particle motion and mass conservation. Klinkenberg et al.
(2011) studied the linear stability of particulate plane Poiseuille flows with the fully Eulerian approach.
The description of the fluid and particles motions are given by the following set of equations:

∂u
∂ t

=−(u ·∇)u − ∇p
ρ

+ν∇
2u +

KN
ρ

(up −u) , (1.23)

∂up

∂ t
=−mN(up ·∇)up +KN(u−up) , (1.24)

∂N
∂ t

=−∇ · (Nup) , (1.25)

∇ ·u = 0 , (1.26)

where u and up are the velocities of the fluid and particles respectively, N the number of particles per
unit volume and p the pressure, m the particle mass, K = 6πaµ the Stokes drag, with a the particle
radius and µ the fluid dynamic viscosity. The fully Eulerian model is, as a two-way coupled model,
valid for larger particles than the dusty gas and equilibrium Eulerian models. It allows for the study of
the effect of the particles on the fluid. Klinkenberg et al. (2011) estimate that the Eulerian two-way
coupled model validity extends for volume density ratio up to 10−3.

Additionally, Boronin and Osiptsov (2008) used a two-away coupled fully Eulerian model, albeit
a more detailed one. Two fluid-particle interaction forces are taken into account. The Stokes force
fSt and Saffman lift fSa f . Even when the particle volumetric concentration is very small, the particle
mass fraction can be significant as the solid particles are much denser than the gas. The system of
equations used is:

∇ ·u = 0 , (1.27)

∂tu =−∇p+
1

Re
∇

2u−nκ fSt −nκ fSa f , (1.28)
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∂tn+∇ · (nup) = 0 , (1.29)

∂tup = fSt + fSa f , (1.30)

fSt = β (u−up) , fSa f = Kj
(

∂v
∂y

)1/2

(v− vp) , (1.31)

Re =
ρU0δ

µ
, κ =

mN0

ρ
=

ρp

ρ
, β =

6πσ µδ

mU0
, (1.32)

K =
6.46σ2(δ µρ)1/2

mU1/2
0

=
6.46
2π

√
β

2
ρ

ρ0
p
. (1.33)

where u and up are the fluid and particles velocity (with v and vp components perpendicular to the
boundary), p is the pressure. κ = mpN0/ρ is the particle to fluid density ratio with mp a particle mass
and ρ the fluid viscosity. β the particle inertia parameter. n is the local particle concentration and
N0 its value in the outer flow. j is the unit vector perpendicular to the flow direction, Three particle
distributions N are considered: constant, exponential decay and increase as a function of the distance
with the boundary layer y, the three concentrations:

N(y) = 1+ exp(−y) , N(y) = 1 , N(y) = 1−0.5exp(−y) . (1.34)

The other parameters regarding the particles are the inertia parameter β which is equal to the ratio of
the boundary layer thickness to the particle relaxation length, and is the inverse of the Stokes number.
The second parameter is the particle mass concentration, α . Boronin and Osiptsov (2016) study the
effect of particles on nonmodal instability and transient growth for particulate plane Poiseuille flows
with a similar model. They used a nonuniform particle distribution with the particle concentrated
in two Gaussian symmetric layers, the particle concentration N0(y) is expressed as the following
equation:

N0(y) =
α

ρ
N∗

(
exp
[
(y−ζ )2

ξ 2

]
+ exp

[
(y+ζ )2

ξ 2

])
, (1.35)

ζ determines the position of the concentration peak while ξ determines its width, ρ is the particle
to fluid density ratio, α the average over the duct of the particle mass loading and N∗ a scaling
coefficient. Equation 1.35 has two peaks to reflect the particles profiles in real flows as particles tends
to accumulate closer to walls in bounded flows (Osiptsov, 1988). The model uses a single effective
velocity to represent the fluid-particle mixture, it assumes a small Stokes number, St ≪ 1 as well as a
Froude number, Fr = (U0/gL)≫ 1, with U0 the centreline fluid velocity, L the channel length and g
the gravitational constant. A possible representation of N0(y) is given in Figure 1.1.
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Figure 1.1: C is the profile type in the spanwise direction of particle concentration used in Boronin
and Osiptsov (2016), V being the usual fluid mean velocity profile.

The fully Eulerian model can also be modified to account for polydisperse particle distributions
(Fox et al., 2008).

1.5 Particulate flows models using Lagrangian particle tracking

The principal advantage of fully Eulerian approaches in modelling the solid phase comes from the
continuous approximation made, the solid phase behaviour is expressed by a few equations and
the number of particles does not influence the model. Therefore, the continuous approximation
significantly simplify the solid phase modelling and lowers the computational cost involved. This is
especially true for large number of particles. However, the continuous particles field approximation
used in Eulerian models also has drawbacks as particles are not considered individually, preventing
the study of particle-particle dynamics. A common method allowing the consideration of particles as
discrete entities is to use Lagrangian tracking for the solid phase while the fluid phase is still modelled
with an Eulerian framework. This allows one to capture a larger part of the particles dynamics than
fully Eulerian models. Notably, polydisperse particle distributions, how the particles are distributed,
collisions and particle rotation which are amongst the main drivers of the particle physics. Using
Lagrangian particle tracking brings more flexibility in the characteristics considered and is closer to
real life particulate flows. However, the computational cost is much higher due to the simulation of
individual particles, with at least one equation per particle to consider. Another complication inherent
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to Lagrangian particle tracking model is the necessity to convert values from the Eulerian mesh to the
Lagrangian one in order to assess the interaction between fluid and particles.

1.5.1 Point particle model

One such Lagrangian model is the point particle method. The point particle-approximation describes
each particle as a single point, significantly simplifying particles tracking and avoiding the need
for meshing at the particle fluid boundary. The acceleration of particles is obtained using Newton’s
second law, it is equal to the sum of the forces applied by the flow. While the particles radius does not
directly affect their description, it is still taken into account when determining particles trajectories as
the forces terms can depend on the particle radius. The description of the particles using a Lagrangian
framework is first used in (Migdal and Agosta, 1967). Maxey and Riley (1983) derived a more
detailed equation for the evolution of a single rigid sphere in an undisturbed flow with the point
particle approximation:

mp
dup

dt
= m f

Du
dt

+(mp −m f )gi −
m f

2
d
dt

(
up −u− a2

10
∇

2u
)

−6πaµ

(
up −u− a2

6
∇

2 u
)
−6πa2

µ

ˆ t

0
dτ

 d
dτ

[
up(τ)−u(τ)− a2

6 ∇2u
]

[π ν (t − τ) ]1/2

 , (1.36)

with up as the particle velocity, u the fluid dynamic velocity at the particle position, a the particle
radius, µ the fluid viscosity, mp the particle mass and m f the fluid mass of a volume equal to the
particle volume. The terms on the right side of the equation represent (from left to right) the pressure
gradient of the flow, the buoyancy force, the added mass term to account for the additional inertia due
to the fluid displacement, the Stokes drag and the Basset history force, due to the lagging boundary
layer development caused by the changing relative velocity of bodies moving through a fluid. These
forces have been mentioned in more detail in Section 1.2.

Point particle models have been mostly used for turbulent flows. Elghobashi (1991) used Equation
(1.36) with a turbulent drag. Squires and Eaton (1991) use a similar model but neglect all the forces
applied to the particles except for the Stokes drag, in this case the velocity of a particle i at a position
Xi and time t is:

dui
p

dt
=

u(Xi)−ui
p

τp
, (1.37)

where τp is the relaxation time of the particles and u(Xi) the fluid velocity at a position Xi.
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Ferrante and Elghobashi (2003) used a two-way coupled model; the standard turbulent motion
equation describes the fluid motion with an additional force term representing the effect of the particles.
A simplified version of Maxey and Riley (1983), assuming heavy particles, is used for the particles
motion:

∂tu+u∇ ·u =−∇p
ρ

+ν∇
2u−F , (1.38)

mp
dup

dt
= mp

(u−up)

τp
+(mp −m f )g , (1.39)

where mp is the particle mass, m f is the equivalent fluid mass, g the gravitational acceleration and
τp the relaxation time of the particles. d/dt is the time derivative in the particle frame. f is the force
exerted by the particles within the integration volume control onto the fluid and is equal to the sum of
the force exerted by each of the N particles present in the volume:

F =
1

mp

N

∑
k=1

Fk . (1.40)

Point particles models can also be adapted to take collisions between particles into account. A four-
way coupled model including binary particle collisions is introduced in Yamamoto et al. (2001). Fluid
and particle motions are handled similarly to Ferrante and Elghobashi (2003), but Yamamoto’s model
also takes particle rotation and collisions into account. The collisions are determined by evaluating
distance between particles between two time step, the particle velocities are assumed to be constant
during this interval, such that the particle position between τ = t and τ = t +dt can be expressed as :

xi(τ) = xi(t)+ τ upi , (1.41)

where xi(τ) is the position of the particle i at time τ , and upi its velocity at time t. The distance
between two particles i and j is then:

d(τ) =
√

(xi(τ)−x j(τ))2 =
√

((xi(t)+ τ upi)− (x j(t)+ τ up j))
2 . (1.42)

Thus the distance between two particle is expressed by a quadratic function whose roots give
potential collision times. The modification of a particle velocity caused by a collision between
two particles is calculated using the equations of impulsive motion with a hard-particle assumption,
detailed in Section 1.6. The particles rotational velocity ωp is given by:

dωp

dt
=−

CT ρ f

2
a5|ωr|ωr , (1.43)



28 Literature overview

where a is the particle radius, ωr the relative rotation rate and CT a non-dimensional coefficient
depending on the particle Reynolds number.

Another method working on similar assumptions as the point particle model is the discrete element
method (sometimes called Distinct Element Method), developed by Cundall and Strack (1979). The
behaviour of the particles is determined through the contact and non-contact forces acting on them.
The Discrete element method has more of an emphasis particle-particle interactions, with a more
sophisticated model for collisions and the inclusion of non-contact forces. The governing equations
for the translational and rotational velocity of a particle i of mass mpi and moment of inertia Ii are:

mpi

dui

dt
= ∑

j
Fc

i j +∑
k

Fnc
ik +F f

i , (1.44)

Ii
dωi

dt ∑
j

Mi j , (1.45)

where ui and ωi are the particle translational velocity respectively. Fc
i j and Mi j are the contact force

and torque acting on particle i by particle j or the walls, Fnc
ik the non-contact forces acting on particle i

and F f
i the fluid-particle interaction force. For each of the force considered, different terms can be

added in function of the parametric range and the phenomenon studied. An overview is given in Zhu
et al. (2007). Averaging methods can be used to describe the model continuously, in general to study
granular flow (Zhu and Yu, 2002). The effect of collisions are calculated through a hard-particle or
soft-particle models, more details are given in Section 1.6.

The point-particle models, and the discrete element method in particular, take a larger part of the
physics into account than Eulerian models. Therefore, they are valid on a larger range of parameters.
Moreover, particles are considered individually, such that it is easier to study their behaviour. One
can also consider polydisperse distributions or particles with varying densities. However, at least one
equation is associated to each particle, and additional computations are required to for the collisions
between particles. It follows that the computational cost is much higher, especially when a large
number of particles is considered.

1.5.2 Immersed boundary model

The immersed boundary method (IBM), created by Peskin (1972), was first used to compute the
flow around heart valves, a challenging problem due to the flexible boundaries of the valves. The
immersed boundary method has since been adapted to particulate flows (Peskin, 2002; Uhlmann,
2005). Interactions between fluid and particles are calculated through an elastic force density f/F (for
the Eulerian/Lagrangian formulations respectively). The main point of IBM is that the particles are
fully modelled, allowing for a more accurate description of the particulate flow than the other models
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seen so far. The fluid behaviour is given by the standard Navier-Stokes equations:

ρ (∂tu+u ·∇u)+∇p = µ∇
2u+F , (1.46)

∇ ·u = 0 , (1.47)

where u is the fluid velocity, ρ its density and ν the kinematic viscosity. f is the force applied by the
particles to the fluid. The Lagrangian-Eulerian transformation is done through a Dirac function δ , with
X(q,r,s, t) the position curvilinear coordinates and x(x1,x2,x3) the position in Cartesian coordinates.
Uppercase letters are used for variables in the Lagrangian coordinates and lowercase letters for
the variables in the Eulerian coordinates system. The conversion from curvilinear to Lagrangian
coordinates for the fluid parameters is given by:

ρ(x, t) =
ˆ

Σ

M(q,r,s)δ (x−X)dqdr ds , (1.48)

f(x, t) =
ˆ

Σ

F(δ (x−X)dqdr ds , (1.49)

∂tX(q,r, t,s) = U(X, t) =
ˆ

Σ

u(x, t)δ (x−X)dx . (1.50)

Since the Dirac function is singular, it cannot be implemented in a numerical scheme. A smoothed
Dirac function δh(x) is used to circumvent the problem:

δh(x) =
1
h3 φ

(x1

h

)
φ

(x2

h

)
φ

(x3

h

)
, (1.51)

φ is a continuous function of the distance h, derivation details are given in Peskin (2002). The method
is adaptable and can be used in different configurations, for example the dynamics of an elastic
material.

Later, the immersed boundary method has been adapted in Uhlmann (2005) to be more suitable to
particulate shear flows. The effect of the particle on the fluid is given through the force term, the term
is equal to zero in nodes without particles. Each particles has a mesh on its surface, comprised of
NL evenly distributed points called Lagrangian force points (Uhlmann, 2005). The number of mesh
points used for a particle of diameter rc is

NL ≃ π

3

(
12r2

c

h2 +1
)

, (1.52)

where h is the mesh width. These points follow the rigid body motion of the particle:

Vi
d(X) = vi

c +ωc × (X−xc) , (1.53)
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with vc and ωc being the velocity and angular velocity at the centre of the particle xc. The conversion
between Eulerian and Lagrangian meshes uses the same function δh as Peskin (2002), so that:

U(X(m)
l ) = ∑u(x)δh(x−X(m)

l )h3 , f(x) =
Np

∑
m=1

NL

∑
l=1

F(X(m)
l )δh(x−X(m)

l )∆V (m)
l . (1.54)

Kidanemariam and Uhlmann (2014a) extended and improved the immersed boundary method, includ-
ing particle-particle interactions and sedimentation. Collisions are described with a force composed
of an elastic, a damping and a frictional component when the distance between particles goes below a
chosen threshold (Kidanemariam and Uhlmann, 2014b; Patankar and Joseph, 2001).

The Distributed Lagrange Multiplier method is a variant of the immersed boundary method
developed by Glowinski et al. (1999). The main feature of the approach is the combination of
the equations of motion for the fluid and particles into a single combined equation using a weak
formulation of the problem. A variant of the standard fluid equations is used both outside and inside
the particle; the flow inside particles is constrained by a rigid body motion. The distance between
two points is kept constant, as in Equation (1.53), using a Lagrange multiplier representing the body
force per unit volume needed to maintain the rigid-body motion inside the particle boundary. The
Distributed Lagrange Multiplier model has the advantage of not requiring the explicit computation of
hydrodynamics forces and torques.

Considering a domain Ω, the time-dependent part of the domain filled by particles is called P(t)
The fluid velocity is described by the standard equation of motion,

ρ f
du
dt

= ρ f g+∇ · τ in Ω\P(t) , (1.55)

where ρ f is the particle density and τ the stress tensor. For the particle velocity Ui of a given particle
i, Newton’s second law yields:

mi
dUi

dt
= mig+Fi +F′

i in P(t) , (1.56)

where mi is the particle mass and g is the gravitational force. Fi represents the effect of hydrodynamic
forces on the particles. For high particle concentrations, the increase in near-collisions events leads to
a marked increase in the number of grids points necessary to the simulation. This issue is mitigated
by the addition of a fictitious repulsive force term F′

i. The fictitious repulsive force exerted on the ith

particle is:

F′
i =

N

∑
j=1
j ̸=1

Fp
i j +

4

∑
j=1

Fw
i j , (1.57)
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where N is the numbers of particles, Fp the particle-particle repulsive force and Fw the particle-wall
repulsive force. The particle-particle repulsive force between the ith and jth particles is given by:

Fp
i j =

0, if di j > ai +a j + l0.
1
εc
(Xi −Xj)(ai +a j + l0 +di j)

2, if di j ≤ ai +a j + l0,
(1.58)

where X is the particle position, a its radius, di j is the distance between the two particles’ center, l0
the cut-off range and εc a (positive) swiftness parameter.

The addition of F′
i in Equation (1.56) prevents collisions between particles, thus avoiding the

necessity of adding another set of equations to describe them. The same method is used for particle-
wall collisions. The particle angular velocity is:

d
dt

Ii ω i = Ti in P(t) , (1.59)

with Ii being the moment of inertia and Ti, the torque of the particle i. Equations (1.46), (1.56) and
(1.59) are combined using a weak formulation in a single equation valid in the entire domain with the
addition of a combined velocity space, v valid in Ω\P(t) and V;ξ , valid in P(t) to incorporate the
rigid body motion in the particles,

ˆ
Ω

ρ f

(
du
dt

−g
)
·vdx−

ˆ
Ω

p∇ ·vdx+
ˆ

Ω

2νD[u] : D[v]dx

+

(
1−

ρ f

ρp

) (
M
(

dU
dt

−g
)
·V+ I

dω

dt
ξ

)
−F′ ·V = ⟨λ ,v− (V+ξ × r)⟩P(t) , (1.60)

where λ is the Lagrange multiplier used to enforce the rigid-body motion condition. The particles
motion is on a distinct mesh, the data is then linearly interpolated between the fluid and particle
meshes.

Immersed boundary models are close to real-life particulate flows. However, they are very
computationally demanding and thus far have been limited to low particle numbers, small domains
and a limited number of runs.

1.5.3 Fully Lagrangian models

One can also approximate the fluid as a set of particles, so that a Lagrangian mesh can be used for
the fluid. Fully Lagrangian methods include the smoothed particle hydrodynamics (SPH) method,
first used in astrophysics to describe stellar models (Gingold and Monaghan, 1977) and expended to
particulate flows (Monaghan, 2012, 1992), as well as moving particle semi-implicit (MPS) method
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(Koshizuka and Oka, 1996). In both cases the motion of the fluid particles and solid particles depends
on their interaction with the other particles of the flow. This interaction is controlled by a weight
function or a chosen kernel function, with a range limit, to evaluate quantities at the particles position.
For a given continuous quantity f one obtain

F(r) =
ˆ

f(r′)W(r− r′,h)dr′ , (1.61)

where W is the kernel function to evaluate interactions between fluid particles, r′ the differential
volume element and h the length scale. W is normalised such that:

ˆ
W(r− r′,h)dr′ = 1 . (1.62)

The integral in equation 1.61 is approximated by a Riemann summation over the particles to
obtain the discrete value, for a particle j:

F j(r) = ∑
i

mi
Wi

ρi
W(r− ri,h) , (1.63)

where mi is the mass, ρi the density and ri the position of the particle i. In theory the summation
is done over all the particles. In practice W is chosen such that its value quickly falls off with the
distance and that the effect of particles whose distance is larger than 2h can be neglected (Monaghan,
2005). Only the kernel is space dependant, thus the spatial derivative of f is:

∂Fj(r)
∂x

= ∑
i

mi
Wi

ρi

∂W
∂x

. (1.64)

Navier-Stokes equations are written, within this model, as:

Dρ j

Dt
= ∑

i
miu ji

∂Wji

∂x j
, (1.65)

Du j

Dt
=−∑

i
mi

(
σ j

ρ j
+

σi

ρi

)
∂Wji

∂x j
+F j , (1.66)

where u ji = u j −ui, σ is the total stress tensor and F is the external forces. Because they are mesh-
free, these methods are well-adapted to shifting boundaries and have been used to study two-phase
flows with a DEM-SPH method (Sakai et al., 2012; Sun et al., 2013) combining an SPH approach
for the fluid and a direct element method for the particles where each particle velocity up is given by
second Newton’s law:

mp
dup

dt
= ∑Fi , (1.67)
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Figure 1.2: Illustration of the collision between particles i and j.

with Fi being the forces applied on the particles, such as drag force, buoyancy and contact forces.
The solid and liquid phases are coupled using a kernel function as well. The DEN-SPH model has
the same advantages and drawbacks as other Lagrangian models, the accuracy of the model is high
as only minimal approximations are made but the large number of particles involved lead to high
computational costs.

1.6 Collision processing

Four-way coupled models take into account particle-particle interactions, notably collisions. Several
models of varying complexity can be used to compute the effect of a collision on the particles
trajectories. The hard-particle collision model, used for example in Yamamoto et al. (2001), assumes
that particles are not deformed during a collision, that the collision is instantaneous and involves
at most two particles at a time, allowing for simplified collision dynamics. The conservation of
momentum, both linear and angular, is used to compute the new velocity and angular velocity after a
collision. Many models already assume the case of rigid particles; in these cases, the hard-particle
collision model does not require additional assumption. For a collision between particles i and j, the
particles translational velocities yields:

mi(u+
i −u−

i ) = J ⇒ u+
i = u−

i +
J
mi

, (1.68)
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m j(u+
j −u−

j ) =−J ⇒ u+
j = u−

j − J
m j

, (1.69)

with J the momentum transferred from one particle to the other, u the velocity, with the superscripts
+/− representing the value of a variable before and after the collision. The particles angular velocity
change is given by:

Ii(ω
+
i −ω

−
i ) = ain̂×J ⇒ ω

+
i = ω

−
i +

ai

Ii
(n̂×J) , (1.70)

I j(ω
+
j −ω

−
j ) = (ain̂)× (−J) ⇒ ω

+
j = ω

−
j +

a j

I j
(n̂×J) , (1.71)

where I is the moment of inertia, a is the particle radius and ω the angular velocity. The expression of
the momentum transfer J can be written in terms of normal and orthogonal components:

J = (J · n̂)n̂+(J · ŝ)ŝ , (1.72)

n̂ =
xi −x j

di j
; ŝ =

∆u− [∆u · n̂]n̂
| ∆u− [∆u · n̂]n̂ |

, (1.73)

with n̂ being the unit normal vector which goes through the centre of the two particles xi and x j, as
illustrated in Figure 1.2. It is orthogonal to the contact plane, di j is the distance between the centre of
the particles i and j. The tangential unit vector, ŝ, is orthogonal to n̂ and points in the direction of the
relative velocity ∆u, defined as:

∆u = (ui −uj) − (ωi ×ain̂+ω j ×a jn̂) . (1.74)

The value of J in the normal direction is

J · n̂ = m′(1+ εN)(∆u− · n̂) , (1.75)

where εN is the coefficient of restitution.

εN is bounded between 0 for a completely inelastic collision and 1 for a perfectly elastic collision.
The value of J in the tangential direction is then:

J · ŝ =

(
1
m′ +

a2
i

Ii
+

a2
j

I j

)−1

(1+ εS)(∆u− · ŝ) , (1.76)

where m′ is the effective mass such that: 1
m′ =

1
mi
+ 1

m j
. The tangential coefficient of restitution is

given by εS ∈ [−1, 1], where εS =−1 corresponds to a frictionless collision and εS = 1, to a perfectly
elastic one. εS = 0 corresponds to the no-slip case. Substituting Equations (1.75) and (1.76) into
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Equation (1.72) yields:

J = m′(1+ εN)(∆u− · n̂)n̂+

(
1
m′ +

a2
i

Ii
+

a2
j

I j

)−1

(1+ εS)(∆u− · ŝ)ŝ . (1.77)

For a spherical particle of radius a, I = 2/5ma2. The expression of J can be simplified as:

J = m′(1+ εN)(∆u− · n̂)n̂+
2
7

m′(1+ εS)(∆u− · ŝ)ŝ . (1.78)

As opposed to the hard-particle model, the soft-particle collision model accepts an overlap δ0 between
the two particles during a collision (as seen in Figure 1.2). However, it is assumed that the particles
retain their shape during a collision so this model is limited to small deformations of the particles. The
forces are divided between the normal component in the direction of n̂ and the tangential component
along ŝ. This category includes two models, the Hertzian contact approximation and the Linear spring
dashpot model. The Hertzian approximation, first developed by Hertz (1882), assumes a small area
of contact compared to the particles size. Moreover, the friction is neglected. The equation for a pure
elastic deformation is of the form:

miẍi = Fi =−kHzδ
3/2 , (1.79)

m jẍ j = F j = kHzδ
3/2 . (1.80)

with δ (t) = xi −x j < δ0, the overlap between the particles.

The initial conditions are δ (0) = 0 and δ̇ (0) = ∆u. kHz is the Hertzian stiffness given by:

kHz =
4
3

a′1/2E ′ , (1.81)

where a′ is the effective particle radius defined as: 1
a′ =

1
ai
+ 1

a j
and E ′ is the effective Young’s modulus,

defined such that 1
E ′ =

1−νi
Ei

+
1−ν j

E j
.

The Linear spring dashpot model was introduced in Cundall and Strack (1979), the spring
represents the elastic deformation and the dashpot represents the viscous dissipation occurring during
the collision. The model is, as the previous one, valid only for small particles overlap and has been
used by Sun et al. (2013). The overlap equation between two particles is represented by a second
order ordinary differential equation:

m′
δ̈ +νcδ̇ + kcδ = δ̈ +2λ δ̇ +ω

2
0 δ = 0 , (1.82)
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where kc is the spring stiffness, νc is the damping coefficient, λ is the damping ratio and ω0 is the
undamped natural frequency. Equation (1.82) solution is of the form:

δ (t) = A(δ̇ (0)/Ω)exp
(
−λ

2
t
)

cos(ω1t −φc) , (1.83)

with

ω1 =

(
ω

2
0 −

λ 2

4

)0.5

. (1.84)

The initial conditions at the time of contact are δ (0) = 0 and δ̇ (0) = δ̇0, where δ̇0 is the difference
between the two particles velocity at the time of collision. With these two conditions, one can find the
value of A and φ , replacing A and φ in Equation (1.83) yields:

δ (t) =
δ̇0

ω1
exp
(
−λ

2
t
)

and cos
(

ω1t − π

2

)
. (1.85)

The particle angular velocity can also be described with a second order ordinary differential equation
and derived using the same method.

Another mechanism is the aggregation of particles. Aggregation mainly occurs for small or sticky
particles in dense suspensions. As this work focus on dilute and semi-dilute suspensions, aggregation
is not relevant.

1.7 Summary of particles modelling methods

The models presented have diverse characteristics and the best suited model depends on the phenomena
studied. A summary of the models used for particulate flows presented in this work is given in Table
1.1, giving each model characteristics and physical assumptions under which it is valid.

Model Characteristics Physical assumptions

Modified fluid eqs. Modified Navier-Stokes equations
depending on particle volume
concentration (dusty gas method)
Variable viscosity dependent on the
particle volume concentration
(suspension rheology).

One-way coupling (particle →
fluid). Small particles act as tracers
(in the limit of very small Stokes
number), considers a homogeneous
particle distribution with
monodisperse spherical particles.

Eulerian modelling
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Equilibrium Eulerian Particle velocity depends only on
the surrounding fluid characteristics.

One-way coupling (fluid →
particle), particles are assumed to be
very small, monodisperse and
spherical.

Fully Eulerian Particles are approximated as a
continuous medium. Fluid and
particles phases are treated as
inter-penetrating media.

Two-way coupling, allows for larger
particles than the models above, as
well as polydisperse particles, but
particles are still assumed to be
spherical.

Mesoscopic Eulerian
formalism

Models turbulent flows by
combining a Eulerian for
fluid-particle interactions and
Lagrangian approach for random
motion.

One-way coupling (fluid →
particle), monodisperse spherical
particles.

Lagrangian particle
tracking

Point particle model Particles are approximated as points,
each particle is associated with its
equation of motion.

Two or four-way coupling, particles
are still assumed to be small, can
handle polydisperse as well as
nonspherical particles.

Immersed boundary
model

Fully modelled particles, the
fluid-particle interactions are
defined through an elastic force. A
combined Lagrangian - Eulerian
method is used.

Four-way coupling, no particle size
limit, well suited for particles with
complex shapes and flexible
boundaries.

Fully Lagrangian Both fluid and solid phases are
modelled as particles

Four-way coupling, possibility for
polydisperse particles distributions
and particles of nonspherical shape.

Table 1.1: List of the different methods usable for particles modelling with their associated character-
istics
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Figure 1.3: Illustrations of laminar (a), transitional (b), and turbulent (c) flows from Reynolds
experiment (image from Reynolds (1883)).

1.8 Stablity in single phase flows

The stability of pipe flow has been extensively studied in the literature. The first study of flow
stability was the experimental work of Reynolds (1883) from which the concepts of laminar flow,
turbulent flow and transitional flow in a pipe are originated; these three states are illustrated in Figure
1.3. Reynolds found that the state of the flow is governed by a single dimensionless parameter, the
Reynolds number Re = UL

ν
, with L a characteristic length of the flow (here the diameter of the pipe),

U its characteristic velocity and ν the kinematic viscosity. In a pipe, the flow exhibits the first signs of
turbulence for Reynolds number ranging from 2000, to 13000, depending on the initial conditions and
the smoothness of the pipe. The transition to turbulence is not a straightforward process. It depends
on several parameters and the distinction between transitional flow and turbulent flow can be difficult
to define. Adding particles furthermore increases the complexity of the process. Numerous theoretical
models have been created in the last decade to describe the conditions of the transition to turbulence
in shear flows. A steady flow is stable to a perturbation if the perturbation energy converges towards 0
in the limit of infinite times. Mathematically, this writes out as:

lim
t→∞

E(t)
E(0)

→ 0 , (1.86)

where E(0) is the perturbation initial energy. There are other way of defining stability relying on
more stringent conditions. A flow is said to be conditionally stable if there exists a threshold energy
ET such that for any initial energy E(0)< ET , the flow is stable. If the threshold is infinite the flow
is globally stable. In the other hand if the flow is unstable even to infinitesimal perturbations, it is
linearly unstable. Finally, a flow is defined as monotonically stable if the amplitude of all perturbation
decreases at all times. In the case of the single phase pipe flow the critical Reynolds number for
monotonic stability is ReE f = 81.5 (Schmid and Henningson, 2012).
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1.8.1 Linear stability analysis

Mathematically, Equation (1.4) is linearised around a steady state U, in the case of the pipe flow
the steady state is called the Hagen-Poiseuille flow with, for a cylindrical set of coordinates (r,θ ,z):
U= (1−r2)ẑ. The stability of the flow is then studied through the addition of a small perturbation u′ to
this steady solution. The perturbation has a wavelike solution: u′ = u(r)exp(i(αz+mθ −ωt)) where
α and m are the wavenumbers of the perturbation and the real and imaginary parts of ω correspond
to the perturbation frequency and growth rate respectively. Additionally, Squire’s theorem states
that for incompressible shear flows, including pipe flows, if there is, for a given Reynolds number
Re3D, a three-dimensional perturbation for which the flow is linearly unstable, then also exists a two-
dimensional disturbance for which the flow is linearly unstable at a Reynolds number Re2D < Re3D.
Using a streamfunction ϕ , Equation (1.4), whose velocity is originally three-dimensional, with
u = u1e1 +u2e2 +u3e3, can be rewritten as a single equation, first derived in Orr (1907) and called
the Orr-Sommerfeld equation:

1
iα Re

(
∂

2
z −α

2)2
ϕ = (U −ω)

(
∂

2
z −α

2)
ϕ −U ′′

ϕ , (1.87)

where c = ω/α is the phase speed. Equation (1.87) can be arranged in a matrix form:

iωAϕ = Bϕ , (1.88)

this system can be solved to find the value of ω and to assess the linear stability of the flow.

Schmid and Henningson (2012) gave an overview on stability analysis for shear flows, including
pipe Poiseuille flows. A flow is globally stable if a perturbation of any amplitude decay exponentially,
Joseph and Carmi (1969) found that the pipe flow is energetically stable (any perturbation monotonic-
ally decreases at all times) for Re < 81.49. Another concept is the linear stability of flow, in order
to study linear stability an infinitesimal perturbation is added to the flow. Given sufficient time, the
perturbation must either decay away with the flow returning to the laminar state or grow into a much
larger disturbance. If all such perturbations to the flow eventually decay away then the flow is linearly
stable, so that an infinitesimal perturbation cannot trigger transition. Pipe flows are considered to be
linearly stable for all Reynolds number, even though there is no definitive theoretical proof as of yet,
there is significant evidence. Sexl (1927) give a theoretical proof for inviscid flow. Pfenniger (1961)
managed to experimentally delay the transition to Re = 106 by suppressing ambient perturbations.
Numerically speaking, linear stability has been studied using eigenvalue analysis (Lessen et al., 1968)
and pipe flow has been found to be linearly stable, Meseguer and Trefethen (2003) studied the stability
for Reynolds numbers up to Re = 107 and did not find linear instability either. The linear stability
analysis of a flow is a very convenient tool to study the stability of a flow. However, the study of
infinitesimal perturbations only gives limited information on the flow behaviour, as most shear flows
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Figure 1.4: Cross-section of the optimal perturbation for a linearised pipe flow.

exhibit subcritical transition. In single phase pipe flow in particular the linear stability analysis results
do not match experimental results, since transition to turbulence is observed for Reynolds number
around 2000 while it is linearly stable for any Reynolds number.

1.8.2 Transient growth analysis

Linear stability analysis focus on the long term decay or growth of a perturbation, before this
eventual decay, however, perturbations can initially grow over a finite period of time. The transient
growth corresponds to the ratio between the maximum energy a flow can have at a time T , ET for a
perturbation of energy E0,

G(T,Re) = max
u0

ET

E0
. (1.89)

The perturbation u0 which causes the largest amount of growth in a flow for a given set of
parameters is often referred to as the optimal disturbance. The linearised Navier-Stokes equation is of
the form:

Du′

Dt
= L u′ , (1.90)
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where u′ is the base flow perturbation and L a linear operator. The flow is normal if the adjoint of
operator, L ∗, commutes with L , i.e. L L ∗ = L ∗ L . Otherwise, such as in the case of the pipe flow,
the flow is non-normal. Interactions between the disturbance and the underlying flow can then lead to
large distortions of the base flow due to the non-normality of the problem. Indeed, if the problem
is normal, then the combination between two or more decaying modes necessarily decays, whereas
when the problem is non normal, the superposition of decaying mode can produce shot-term growth.
This optimal perturbation was calculated for pipe flows (Bergström, 1992, 1993; Zikanov, 1996),
as well as by Reshotko (2001) in the case of spatial growth. It was found that the linear transient
growth is primarily driven by streamwise independent rolls which generates streaks (an illustration is
given in Figure 1.4). Bergström (1992) studied the optimal growth and the time of its peak, finding
that the time at which the peak in energy is reached increase linearly with the Reynolds number of
the flow while the optimal linear transient growth scales with Re2 for all modes. While the value
depends on the Reynolds number, the optimal growth is roughly two orders of magnitude larger than
the initial perturbation, for example, the optimal energy growth is, for a Reynolds number Re = 1000,
is Gmax = 72.4 and occurs at a time Tmax = 48.8.

A linear transient growth analysis is limited in scope, the perturbation experiencing the most
growth is not necessarily the most susceptible to trigger turbulence as it only takes into account the
growth caused by linear effects. Even for very small perturbations for which the nonlinear terms
can initially be safely neglected, one may run into difficulty as the disturbance grows, leading to
nonlinearity having a significant impact. The natural next step is to retain the nonlinear term of the
Navier-Stokes equation.

1.8.3 Mechanisms leading to the formation and sustenance of turbulence

The perturbation the most capable of causing transition to turbulence is not necessarily the one found
by a linear analysis. Perturbations that are the most likely to trigger transition have been studied
over the last few decades. One example of such perturbations are Tollmien-Schlichting (T-S) waves,
which are two-dimensional streamwise waves arising in the viscous boundary layer (Baines et al.,
1996; Wu et al., 1996). Baines et al. (1996) focused on temporal stability, considering two parts of the
disturbance: an inviscid mode propagating on the vorticity gradient of the velocity profile with the
free-slip boundary condition and a damped spatial viscous mode in an infinite uniform shear with
no slip condition inside the boundary. Baines found that the excitation of the least stable viscous
mode produces a positive feedback in the inviscid mode propagating on the vorticity gradient causing
wave growth which is the first step towards instability. Wu et al. (1996) performed a weakly nonlinear
study of the T-S waves using high Reynolds number asymptotic methods. Their model describe the
evolution of spanwise T-S wavetrains in the boundary layer for the nonlinear case. They found that
the nonlinear effects arose mostly from the critical and diffusion layers. As spanwise modulated
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waves can also lead to a singularity, they notably highlighted the possibility of the existence of a
velocity jump, especially for three-dimensional perturbations. In the case of perturbations having an
energy around one percent of the mean flow, Klebanoff et al. (1962) described the pattern as "peak
and valley regions", and observed that spikes occurred in peak regions before breakdown. In this case,
the transition is characterised by a disturbance frequency approximately five time the frequency of the
T-S wave and with aligned lambda-vortices (vortices with two elongated legs of oppositely signed
streamwise vorticity and a tip of spanwise vorticity). This is referred as a K-type secondary instability
or fundamental transition. For a weaker disturbance, the three-dimensional waves have a smaller
frequency, which is around two times the frequency of T-S waves, and are said to be subharmonic
(Herbert, 1988). K-type secondary instabilities have an higher growth rate than the K-type waves so
are, theoretically, more likely to occur. At later stages, the structures are mostly similar than K-type
instabilities, although they are more staggered in this case. They are in general referred to as H-type
secondary instabilities or subharmonic transitions. Craik (1971) highlighted the existence of a case
where only the spanwise wavelength changes. A pair of oblique waves and a two-dimensional wave
of twice the frequency of the two oblique waves form a resonant triad which extract energy from the
shear flow. This is defined as C-type transition or subharmonic-resonance mechanism. Schmid and
Henningson (2012) studied another way the transition can occur which they call oblique transition.
Oblique transition is described in Berlin et al. (1994) by three stages. First, nonlinear generation
of streamwise vortices by a pair of oblique waves, then the streaks go through a transient growth
process and finally breakdown of the flow if the amplitude of the streaks exceed a given threshold.
All these different possibilities for transition have common points, as they follow a similar process
of exponential growth instabilities. The bypass transition is the specific process where turbulence
is generated directly from the primary growth (the secondary transition is "bypassed"). In he case
of bypass-transition, the transient growth is mostly caused by lift-up effects. These lift-up effects,
first noticed by Landahl (1975), are caused by the effect of the wall normal velocity on fluid particles
in shear flows (or, mathematically, from interactions between non-orthogonal eigenmodes). The
fluid particles are displaced in the cross-stream direction and induce a perturbation in the streamwise
velocity. Brandt (2014) studied more thoroughly the lift-up effect. He found that the effect was
resilient to external noise and is favoured over exponential instabilities for moderate to high noise
level. The lift-up effect affects mainly the streamwise vortices, generating large amplitude streaks.
The transition to turbulence has been found by Kreiss et al. (1994) to be the result of a secondary
instability of these streaks. The question naturally following is how turbulence is sustained. Waleffe
(1995) presented a mathematical argument for a self-sustaining process using the following simplified
model in place of the Navier-Stokes equations. The self-sustaining process consists of three steps:

• Streamwise rolls redistribute the mean momentum into streaks (spanwise modulation of the
streamwise velocity).

• The spanwise varying flow breaks down due to wavelike instabilities in the spanwise direction.
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• The nonlinear development of the instability feeds back energy into the streamwise rolls,
sustaining them.

Waleffe (1997) extended the results to wall-bounded flows with a lower order model where the
Navier-Stokes equations are projected on a suitable set of orthogonal modes.

1.8.4 Localised turbulence, puffs and slugs

There is, between laminar and space-filling turbulent states, an intermediate window where there
is spatial coexistence of the laminar and turbulent phases, corresponding to the transitional state
observed in Reynolds (1883). It follows that the first step of the transition to turbulence is the creation
of localised turbulent patches. This coexistence occurs in two distinct configurations, discussed in
Wygnanski and Champagne (1973) and numerically studied in (Reuter and Rempfer, 2004; Shan et al.,
1999). For lower Reynolds numbers, from Re = 1600 to around Re = 2000, the patches are called
"turbulent puffs". They are localised pockets of turbulence between ten and twenty diameters long
with lower turbulent intensity than fully turbulent flow. Puffs have several characteristics described in
Wygnanski et al. (1975). Their length is constant for a given Reynolds number. Turbulence intensity
is stronger towards the centre of the pipe than close to the wall. Lengthwise, it increases towards the
rear of the puff with a peak at the downstream front. Transition to turbulence occurs gradually at the
upstream front, with no clear distinction between puff and laminar flow, while the downstream front is
characterised by a sudden relaminarisation. Turbulence is created upstream by drawing energy from
the laminar flow, on the other hand, the downstream front has a flat profile, typical of turbulent flows
which has a stabilising effect. Puffs propagate down the pipe at approximately the mean velocity of
the laminar flow with a slightly faster upstream front and a slow diffusive downstream front (Nishi
et al., 2008). In both cases, the difference in velocity increases with the Reynolds number so puffs
length growth faster as the Reynolds number increases. Puffs can also split, as they grow in size
until relaminarisation occurs in the middle causing the structure to break into two puffs (Shimizu
et al., 2014; Wygnanski et al., 1975); puffs can also decay spontaneously (Faisst and Eckhardt, 2004).
For Reynolds numbers above 2500 (the exact value depends on various parameters such as initial
conditions), another type of structure, called ‘slugs’ is formed. The interior of these slugs is very
similar in shape and in intensity to fully turbulent flows. Contrary to puffs, slugs fill the entire
cross-section, and both their upstream and downstream fronts are sharply defined. Turbulence is
formed at both fronts and the turbulence intensity is constant except at both its extremities where it
peaks. The front edge travels significantly faster than both the average flow and the back edge, so the
slug expands as it propagates. Therefore, the presence of slugs leads to the development of a fully
turbulent flow. Nishi et al. (2008) studied more cases, and showed that the distinction between puffs
and slugs is not clear cut, puffs at higher Reynolds numbers have a sharper front edge and can sustain
a zone of turbulence.
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1.8.5 Statistical nature of the flow

The critical Reynolds number Rec is often characterised as the Reynolds number defined such that for
any Reynolds number Re> Rec the created turbulence holds forever. Therefore studies have to be done
with very long pipes over large periods of time in order to determine the critical Reynolds number, for
both experimental (Darbyshire and Mullin, 1995; Peixinho and Mullin, 2006) and numerical studies
(Faisst and Eckhardt, 2004; Hof et al., 2006). Faisst and Eckhardt (2004) were able to observe decays
up to Re = 2250, Peixinho and Mullin (2006) found similar results, albeit with a lower Reynolds
of 1750. Hof et al. (2006) conducted an experimental study using a 7500 diameter pipe but did not
find such a cut-off value. The justification for the absence of a critical Reynolds is that decay times
become too large, as Re > 2300, to be able to realistically observe turbulence decay through either
numerical simulation or experimental means. It is now commonly accepted that there is no such
critical Reynolds for pipe flows and that turbulence always decays over a sufficient long period of
time, albeit it is impossible to formally verify this assumption.

Even if the turbulence eventually decays, one can study its lifetime and how this lifetime depends
on factors such as the Reynolds number and the perturbation amplitude. Darbyshire and Mullin
(1995) studied the state whether a perturbation created at the pipe onset had decayed or not 120
diameters after its creation, as a function of its initial amplitude and the Reynolds number of the flow.
They found that while increasing Re increases the likelihood of having the perturbation persist, as
one would expect, the relationship between Re and the probability of turbulence is non-monotonic.
Eckhardt et al. (2007) wrote a review about transition to turbulence from the statistical point of view.
He studied the lifetime of a perturbation in function of its amplitude and Re, obtaining a wider range
and results. The result is highly non-monotonic, with peaks and valleys; small changes in parameters
resulting in large difference in either direction.

Since the lifetime of turbulent puffs depends dramatically on small variations of the initial
conditions, the study of turbulence’s lifetime is highly challenging. A way to bypass these issues
is to study the flow as a dynamical system. The flow is considered in its state space, the space of
all velocity fields satisfying the problem conditions (corresponding to the equations describing the
flow behaviour plus the boundaries conditions). The state space contains both laminar and turbulent
profiles, and coherent structures observed during transition such as vortices, T-S or travelling waves
are present within the space state at different points. In the region dominated by the laminar flow, the
parabolic flow is a fixed point attractor. All points close (in the state space) to the attractor evolve
towards it, forming a basin of attraction of the laminar flow. In the region of the space state dominated
by the turbulent flow there are similar but not identical attractors, not all neighbouring points are
attracted to turbulence dynamics since there is a probability of decay. Those attractors are called
strange saddles or chaotic saddles; they are not persistent, contrary to fixed points attractors.
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Figure 1.5: Examples of directed percolation in the case of a subcritical state (left), critical state
(centre) and supercritical state (right).

An important feature of the state space is the boundary, often called edge of chaos, between
the laminar and turbulent regions (Schneider et al., 2007). In particular, one has to consider the
mechanisms and conditions for which the edge can be crossed, corresponding to a transition from
laminar to turbulent state, or vice-versa. One way to find the edge is nonlinear transient growth,
the concept was introduced in Pringle and Kerswell (2010), and extended in Pringle et al. (2012).
The first paper analysed the difference between linear and nonlinear transient growth in a pipe; they
found a significantly higher maximum energy gain in the nonlinear case, and that the form of the
optimal perturbations in linear and nonlinear cases is distinctly different. The methods also allows,
by way of very small variations of the perturbation amplitude, to study the edge between laminar
and turbulent flow states. Turbulence can spontaneously decay, implying the existence of a decaying
trajectory going from the turbulent saddle to the laminar basin of attraction, thus going through the
edge. Chantry and Schneider (2014) postulate that the edge does separate laminar and turbulent space
globally in state space, but is rather wrapped around the turbulent state and part of the chaotic saddle,
therefore leaving a path for trajectory to go from turbulent to laminar state without crossing the edge.
Chantry and Schneider (2014) worked with a numerical simulation of a Couette flow, but it is quite
possible that the result can be generalised to other shear flows, including pipe flows.

Since the behaviour of the perturbation close to transition is chaotic, it is more pertinent to work
with the statistics of the lifetime. Numerical studies (Eckhardt et al., 2007; Faisst and Eckhardt,
2004) found that for a large enough data sample the process is memoryless, and the rate of decay is
independent of time. One can, therefore, express the probability of a puff to persist until time t as
P(t) ∝ exp(−t/τ). Combining dynamical systems theory with the statistical nature of the transition
in shear flows leads to describing the life time of turbulence using percolation theory. A subset of
percolation theory, direct percolation, can model the behaviour of liquid in a network for a given
vertice (or site) where the "value" is present. Each neighbouring site has a probability p to allow the
value diffusion to the given site. The key parameter is the critical probability pc:

• p < pc: subcritical state, the probability of any point to contain the value decreases exponen-
tially towards zero with the increase of the network size (Figure 1.5a).
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• p = pc: critical value, expresses the phase transition between subcritical and supercritical
regimes (Figure 1.5b).

• p > pc: supercritical state, the probability of any point to contain the value increase exponen-
tially toward zero with the increase of the network size (Figure 1.5c).

The percolation theory for transitions in pipe flows is applied in Barkley (2011), Sipos and Goldenfeld
(2011) and Avila et al. (2011). Each node of the network corresponds to a region of the size of the
viscous length scale. If the turbulent intensity in a node is above a given threshold it is considered
turbulent, otherwise it is laminar. The probability p is linked to Re so one can study the statistical
behaviour of the flow depending on its Reynolds number, in particular, the time scale of the puffs. One
can determine the critical Reynolds number by comparing the time scales of puffs’ decay and split. If
the former is larger, then turbulence is more likely to spread in the flow. Avila et al. (2011) found the
critical Reynolds number for which time scales of puffs’ split and decay are equal, at Re = 2040. The
study of transition to turbulence using percolation theory also has been applied to other shear flows,
such as Couette flows (Lemoult et al., 2016) and plane Poiseuille flows (Sano and Tamai, 2016).

While percolation theory gives a way to characterise transition to turbulence in shear flows, it
does not reveal any of the mechanisms behind the creation or dissipation of turbulence. Puff dynamics
occur over large distances and perturbations, and in the transitional regime puffs decay after extended
periods of time (Hof et al., 2006). So, when conducting an experiment or running a numerical
simulation, a long pipe and a large number of particles are necessary to capture the dynamics of
the transition to turbulence of particulate flows. Furthermore, the statistical and chaotic nature of
the problem as well as the large parameter space, the particle density, their size, number and spatial
distribution added to the usual parameters for single phase flow, require a substantial number of runs
in order to producer general results. These factors make the study of transition to turbulence for
particulate flows a particularly challenging problem.

1.9 Effect of the solid phase in the transition to turbulence for shear
flows

1.9.1 Effect of the particles on the stability

While turbulence transition has been less extensively studied for particulate flows than single phase
flows, a number of aspects of particulate flows have been investigated. The majority of the literature
focuses on the trajectory of particles; their clustering and deposition in laminar or turbulent flows. In
comparison little interest has been shown in the transition between the two states.
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Particulate Hagen-Poiseuille flows have been studied experimentally, notably in Matas et al.
(2003), using neutrally buoyant particles. It has been found that the effect of particles on the transition
to turbulence varies depending on the particles’ size and volume concentration. The transition to
turbulence is delayed for small particles, when r0/a > 65. For these values of r0/a the Reynolds
number for which the transition to turbulence occurs increases monotonically with the particle volume
concentration. For high particle volume concentrations (φ > 20%), the critical Reynolds number, Rec,
does not depend on the particle size. For bigger particles (r0/a 6 65), the value of Rec decreases. For
small particle volume concentrations, Rec decreases rapidly with the concentration. However, past a
threshold of φ ≃ 5−10%, the transition is delayed as the concentration increases. They also state the
hypothesis that the particles alter the threshold of the subcritical transition through coupling of the
base flow with the velocity perturbation rather than through changes in the base flow itself. The main
difficulty encountered in the experiment is the lack a of clear definition of when exactly the flow is
considered turbulent in the case of particulate flows. Furthermore, the pressure measurement method
used in this experiment to determine the flow rate is not reliable for high particle concentrations. To
circumvent the problem, Matas et al. (2003) measured the pressure drop between the two ends of the
pipe The pressure drop is much higher when the flow is turbulent due to the turbulent puffs, allowing
them to make a clear distinction between laminar and turbulent states.

Numerically, very little has been done about transition to turbulence for pipe flows and the
work is very specific. Yu et al. (2013) studied very large buoyant particles. Yu found that for low
concentrations, the transition is facilitated by the presence of particles whereas it is delayed for
high concentrations; their results are in accordance with Matas et al. (2003). They also studied the
evolution of the position of particles with time. In order to define when turbulence was occurring
they considered the size of the flow eddies compared to the size of the particles. More precisely, they
looked at the normalised energy of the streamwise velocity fluctuation directly linked to the size of
the eddies. The minimum normalised energy for which the flow is considered turbulent is between
0.013 and 0.02.

Several other numerical studies have been done for the plane Poiseuille flow. The results cannot
be directly applied to pipe flows, but since both are shear flows, one can expect similarities in their
properties. A linear stability analysis is done by Klinkenberg et al. (2011) and Klinkenberg et al.
(2013). In their model, they consider very small particles and the hypothesis that continuity is not
broken by their presence. A modal study (exponential growth) and a non-modal one (transient growth)
are performed in the first paper. In the modal case, they observe a stabilising effect for intermediate
particle size, whereas very large particles are decorrelated from the flow and have no effects. On
the other hand very small particles behave like tracers, only modifying the critical Reynolds number
through a change in the average density of the flow. The transient growth itself is still dominated
by the lift-up mechanism. The particles delay the rate of the disturbance growth but the energy gain
is increased by a factor (1+ f )2, f being the particle mass concentration. Klinkenberg et al. (2011)
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found that the particles have a very different effect on exponential and transient growth suggesting that
this is due to the different time scales associated with each phenomenon. Klinkenberg et al. (2013)
uses the same model for the particles, but now includes two-way coupling. The fluid flow equations
are solved with an Eulerian mesh while the particles evolution is determined through Lagrangian
tracking in order to make a fully nonlinear analysis of the transition. Two classic cases are studied,
oblique waves and streamwise independent counter-rotating vortices associated to a three-dimensional
mode; the main interest being the study of the influence of particles on later stages of the transition not
covered by the previous modal and non-modal studies. For high concentrations of particles, there is
an increase of the energy threshold necessary to trigger turbulence in both cases, the effect is stronger
for oblique waves. It is argued that particles hinder the generation of streamwise vortices through
nonlinear interaction with the oblique modes, thus stabilising the flow. In the second case the streak
evolution is unaffected but the three-dimensional modes are weakened by the presence of particles,
delaying the transition.

Particles migration has been shown to have a significant effect on the transition to turbulence for
shear flows. Boronin and Osiptsov (2008) and Boronin and Osiptsov (2016) studied the stability of
solid-gas boundary layer flows with a nonhomogeneous distribution. Three particle distributions are
considered in Boronin and Osiptsov (2008); a uniform distribution as well as both exponential decay
and increase as a function of the distance with the boundary layer. As for the forces acting on the
particle, their model take into account the effect of Stokes and Saffman lift. In the case where only
the Stokes force is taken into account, for all three distributions the addition of particles increased the
critical Re of the flow; this stabilising effect is significantly more pronounced for particle distribution
concentrated near the boundary. The critical Reynolds number, Rec is around 350 for pure fluid, 900
for a constant particle distribution and almost 2500 for a particle distribution increasing towards the
wall. When the Saffman lift effect is taken into account a singularity appears in the critical values for
certain values of the governing parameters.

Boronin and Osiptsov (2016) study the effect of particles on nonmodal instability and transient
growth for particulate plane Poiseuille flows. They used a nonuniform particle distribution with the
particle concentrated in two Gaussian symmetric layers shown in Figure 1.1. The largest growth
is attained when the particles are concentrated halfway between the wall and the centre. There is
also general increase in the transient growth as the particles get more localised. The addition of
particles induces, in the most extreme case an increase of the transient growth of almost three orders
of magnitude larger compared to the single phase flow.
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1.9.2 Particles distribution across the pipe

As mentioned in Section 1.9.1, particles migration is a key element of the stability of bounded shear
flows. The study of how the particles are distributed in Pipe flows is closely related to the problem
of particulate flow stability. The distribution of particles in the pipe is an important facet of the flow
dynamics, including the flow stability, and has been a topic of interest for decades. The distribution
of particles in a pipe flow has been first investigated experimentally in Segre and Silberberg (1962).
The experiment, concentrated on the lower range of Reynolds numbers, ranging from Re = 3.7 to
Re = 694. Segre and Silberberg (1962) found that the particles converged towards a single radius,
also called the Segré-Silberberg radius at r/r0 = 0.6, with r0 being the pipe radius. Immigration of
particles had been observed in previous experiments, Segre gives as example the study of blood flow in
Poiseuille (1836) and Taylor (1955). Particles are affected simultaneously by radial forces in opposites
directions due to the the Magnus effect, directed towards the centre of the pipe (Rubinow and Keller,
1961), and the Saffman lift directed towards the wall (Saffman, 1965). There is an equilibrium position
where the two forces balance each other. Segre derived a theoretical argument that this position’s
radius is around 0.6. The term tubular pinch effect has been coined to express the convergence of the
particles towards this equilibrium position. This position does not depend on the particle distribution
at the inlet, theoretically all the particles position themselves at the equilibrium radius after a long
enough time. Jeffrey and Pearson (1965) studied the repartition of particles in a pipe for laminar
flows with a Reynolds number ranging from Re = 67 to Re = 2400, and a particle volume fraction
under one percent. They found that neutrally buoyant particles migrate towards r = 0.67. For heavier
particles, the radial velocities of particles are higher and the particles radial migration occurs in a
smaller time scale.

A more recent and comprehensive study on the topic has been done by Matas et al. (2004b). The
position of the particles is measured 310 diameters downstream where the flow can be assumed to be
fully established. Particles are randomly distributed at the entrance. Particles are of a relative size
r0/a ranging from 8 to 42, with the following intermediate values, r0/a = 9,10.5,15,17 (where r0 is
the pipe radius and a the particles radius). The particle volume fraction is small enough for the dilute
assumptions to be valid, so that particle-particle interaction are of negligible importance. Matas found
that the radial position at which the particles migrate to depends on Re. Particles migrate closer to the
wall as the Reynolds number increases. Moreover, as the Reynolds increases a fraction of the particles
start to settle to a second radial position as well, closer to the centre of the pipe around r = 0.5. The
value of Re at which it appears is dependent on the particle relative size, the threshold is Re = 600 for
r0/a = 9 to r0/a = 17 and Re = 1200 for r0/a = 42.

The peak closer to the wall is very sharp while the other one is more diluted with a non negligible
particle concentration from 0.3 to 0.7. As the Reynolds number continues to increase, particles
migrate to the inner annulus until only the peak closer to the wall subsists for Re = 1650. Finally,
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for Re = 2400, the particles are almost evenly distributed, with a less pronounced maximum at
r = 0.4−0.5. The length necessary for radial particles migration depends on the particle size. For the
largest particle considered (r0/a = 8), the migration only appeared to be partial at the measurement
point.

Small density differences between particles and fluid can affect the distribution through particle
sedimentation. Radial inertial force dominates buoyancy for higher Re, the settling length for buoyancy
force is also longer than settling length one for radial inertial effect. Therefore if Re is sufficiently
high, transient phenomena still occur even for non-buoyant particles.

Asmolov (1999) performed a numerical simulation using the asymptotic theory to find the lift
force applied on a spherical particle. The simulation also takes into account the effect of the Stokes
drag force and the buoyancy. Asmolov’s code has been used in Matas et al. (2004b) to establish
a comparison with their data. Simulations and experiments agree on the radial position where the
particles are concentrated. However, more particle are on the "equilibrium" radius in the simulation,
this is especially true in the case of large pipe length, where nearly all particles are concentrated at
the same radius. A more recent numerical study has been done in Shao et al. (2008), using a slightly
modified version of the fictitious domain method with an explicit scheme, considering two particle
sizes, a/r0 = 0.10 and a/r0 = 0.15, as well as two pipe sizes: L = 2r0 and L = 4r0 with r0 the pipe
radius. For one particle, they find that for higher Reynolds number, when Re > 103, the particles
migrate towards a radius r ≃ 0.5; in the same region as observed in Matas et al. (2004b) experiment.

Axial particle distribution has been studied in Matas et al. (2004a), in an experimental study using
the same set-up as Matas et al. (2004b). They observed, during measurements, the appearance of trains
consisting of up to 40 particles in the flow direction. They are located at the Segré-Silberberg radius
and visible for Re > 100. The proportion of the particles in trains depends on the Reynolds number. It
increases with the Reynolds number at first until a peak is reached for Re varying from 500 to 1000,
depending on the particle-pipe length ratio r0/a. Past this Reynolds number the proportion of particles
in trains decays. This decay is due to the change of regime in the particles distribution from the outer
Segré-Silberberg radius to the inner radius occurring around similar value of Re. Matas et al. (2004a)
explained the phenomenon of train formation by the dilute suspensions used in the experiment, with
a particle volume fraction φ 6 0.24%. Coupled with more evenly distributed particles in the radial
distribution for higher values of Re, particles are in this case too far apart to form trains. The authors
also argued that the distance between particles in trains depends on the particle Reynolds number
Rep = Re(a/r0)

2. Data show a mostly linear decrease with Rep. The phenomenon is hypothesised to
be due to flow patterns around a sphere changing around Rep = 1 (Matas et al., 2004a; Mikulencak
and Morris, 2004). When Rep ≫ 1 the influence of the particle on the flow far away from the body
does not depend upon the motion on the surface of the particle. It also implies that for stationary flows
in these conditions, flows patterns behind fixed and free bodies are identical.
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1.9.3 Particles’ impact on turbulent flows

For turbulent flows, particles are distributed non-homogeneously (Eaton and Fessler, 1994). While
very small particles follow the motion of the fluid and are evenly distributed while larger particles
tend to cluster, as for particle density effects, heavier particles accumulate in regions where the strain
rate is dominant while lighter particles accumulate in regions where the viscosity is stronger.

A plane Poiseuille flow experiment by Kussin and Sommerfeld (2002) found that while the average
turbulent velocity profile of the fluid does not significantly change with the addition of particles, the
particle average velocity profile is significantly different from the parabolic fluid profile, being almost
flat. As the particle concentration increased, the velocity fluctuations decreased due to particle-particle
interactions using an increasing part of the flow total energy. Experimental work by Gore and Crowe
(1991) showed that particles had a strong effect on turbulence intensity in pipe flows. The direction of
the effect depends on the particle size ratio; small particles dampen the turbulence while particles
with a ratio between particle and turbulent length scale larger than one increase it. The turbulence
intensity can be more than doubled in some cases. The effect also depends on the particle location
in the pipe; it is more pronounced close to the centre of the pipe. Turbulence modulation has also
been found in jet and is impacted by particle size in a similar fashion. However, the effect size is
smaller with an increase below 50% and is independent of the radial location. Boivin et al. (1998)
studied this phenomenon with a two-way coupled point particle method, they found a similar result to
Gore and Crowe (1991); an attenuation of turbulence by the addition of particles, although the effect
was smaller. Underlying mechanisms for the turbulence modulation are given in Balachandar and
Eaton (2010) and Gore and Crowe (1991). Turbulence dissipation is due to the increased drag caused
as small particles follow larger eddies and sap part of its energy through the drag force, as well as a
change in effective viscosity and enhanced inertia of the flow. Turbulence kinetic energy increase is
caused by the creation of turbulent motion in the wake of particles and buoyancy driven instabilities
due to non-homogeneous particle distributions.

1.10 Experimental techniques for particulate and transitional flows

The first experimental study of transition to turbulence in pipe flow was done by Reynolds (1883)
and relied on dye visualisation of the phenomenon. Experimental techniques have come a long way
since then. The main challenge in experimental works is measuring the flow pressure and velocity.
Various methods have been developed for this purpose. A historically popular method is to measure
the fluid velocity using an hot-wire anemometer, an electrically heated wire probe placed inside the
flow, where the wire is cooled by the flow proportionally to the flow velocity. By measuring the
wire resistance which depends on its temperature, one then can obtain the flow velocity. Pressure
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based flow-meters measure the differential pressure difference between two points and derive the flow
velocity through Bernoulli equation. Inertial flow meters rely on the Coriolis force, within which a
vibrating tube is placed into the flow, its vibration frequency is proportional to the mass flux. All these
methods use intrusive measurement tools, and are only of limited utility for particulate flows since
they are vulnerable to collisions for larger particles. Moreover, they do not allow for the measurement
of particle velocities.

Laser-based flow measurement techniques, being non-obtrusive methods, are more suited to
particulate flows. One such tool is the laser-Doppler anemometry (LDA). Tracer particles are
introduced in the flow. Their velocity is assumed to be equal to the surrounding fluid and their size
sufficiently small, such that the particles influence on the fluid can safely be neglected (Melling,
1997). The flow is illuminated by two lasers, and the light scattered by the particles is detected by a
photodetector. The interference between the two lasers yields a signal measured by the photodetector
which is directly proportional to the velocity of the tracer particle, allowing to determine the tracer
particles velocity. The data from the tracers particles can be used to obtain the velocity profile of the
fluid. The signal depends on the size of the particle considered; therefore, with a suitable calibration
the velocity of larger particles can be measured, making LDA methods well-suited to particulate flows.
Stock et al. (1975) used two processors to process the photodetector data, the first had a low gain and
could detect objects with high signal amplitude corresponding to the particles, while the second with
a high gain, detected the tracers with their low signal amplitude.

A similar measurement method, particle image velocimetry (PIV), is nowadays the most com-
monly used method for particle measurement. Similarly to LDA, the flow is seeded with tracer
particles and the flow is illuminated by a laser. However, in PIV methods, a high speed camera is used
to capture images of the flow; a particle velocity can be calculated with the distance travelled between
two subsequent images. The data can also be processed to obtain various particles characteristics such
as vorticity or path-lines. In addition to 2D-PIV, there are several methods that have been developed for
three-dimensional measurements field. Lawson and Wu (1997) used stereoscopic techniques; Hassan
et al. (1992) used cross-correlation methods and Okamoto et al. (1995) used spring model methods.
Hassan (1998) used a PIV set-up to study two-phase flows with fluid and air bubbles. The tracking of
larger particles can be achieved with the same methods used for the tracer particles, as larger particles
scatter more they are easier to track with a camera. However, laser based methods can only be used
for lower particles concentrations. Matas et al. (2003) used pressure drop measurement to bypass
the issue and observed dense suspensions using pressure drop measurements at both extremities of
the pipe. The pressure gradient in turbulent flows cause stronger pressure drops than laminar flows.
While this method allows to characterise the flow transition, it gives no information on the fluid and
particles velocities.

Due to the chaotic nature of transition in pipe flows and the long timescales involved (Eckhardt
et al., 2007); one need a pipe whose length is sufficiently long (at least of the order of a hundred
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diameters) in order to capture the transitional dynamics of the flow, which represents a challenging
engineering problem. For example, Darbyshire and Mullin (1995) used a pipe of 190 diameters for
their experiment, Peixinho and Mullin (2006) studied puff decay with a 785 diameters pipe. Faisst and
Eckhardt (2004) and Hof et al. (2006) considered length over a thousand diameters in their numerical
simulations.

Because pipe flows are linearly stable, they are highly sensitive to the nature of the perturbation.
This is especially true for larger values of the Reynolds number. Therefore, experiments need to both
control the amplitude and the form of the perturbation to study its effect on the flow transition and
avoid other sources of perturbation that can disturb the flow. Often the disturbance is created directly
injecting an impulsive jet to the flow (Darbyshire and Mullin, 1995; Hof et al., 2003; Peixinho and
Mullin, 2007), while this allows to control the amplitude of the perturbation this is not the case for its
shape; Nishi et al. (2008) used an iris diaphragm to provoke a small flow blockage, triggering puff
generation. Wygnanski et al. (1975) connected the pipe to a small outside reservoir, the vibration of a
speaker placed against the reservoir provokes the creation of a perturbation inside the pipe.

1.11 Numerical methods

The Navier-Stokes equations describing the fluid do not have a single analytical solution in most cases,
their evolution needs to be computed incrementally from a chosen initial state. In the case of turbulent
flows, several numerical methods can be used to simulate the flow. The most commonly used models
to describe turbulent flows are k− ε and k−ω models. They both describe turbulence through a set
of two partial differential equations. The variables are, in the k− ε model, the turbulence kinetic
energy k and the rate of dissipation of turbulence energy ε while the k−ω model uses specific rate
of dissipation of the turbulent energy, ω , with the turbulence kinetic energy k. The k− ε and k−ω

models are only valid in the framework of fully turbulent flows, they are not suited to our problem as
we focus on the transition between laminar and turbulent states. Another commonly used method is
the Direct Numerical Simulation (DNS), where the entire scale range is simulated, and to a lesser
extent; Large Eddy Simulation (LES) where only the larger length scales are fully described and the
smaller scales are approximated through a sub-grid stress tensor. While a DNS is more numerically
costly, the general increase in computational resources have facilitated its use. Furthermore, in the
case of discretely modelled particles with more than a few dozens particles, the cost of simulating the
solid phase is significantly higher than the cost of simulating the fluid phase. Therefore, the choice
between LES and DNS has little influence on the total running cost of a particulate flow numerical
simulation.
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1.11.1 Particle modelling

Another critical point of the numerical simulation method is the modelling of the particles themselves.
The optimal strategy strongly depends on the theoretical model considered. If the particles are
described with a fully Eulerian framework, such as the models described in Section 1.4.2, the particle
modelling can be built directly upon the code describing the fluid phase. The solid phase is modelled
through a modification of the set of equations used to describe the fluid while the rest of the numerical
procedure can be kept identical. Since the particles are described as a continuous medium, the existing
mesh and numerical methods used to solve the fluid behaviour can be used. In the case of one-way
coupling, since the flow evolution is not dependent on the particles characteristics, one can consider
simultaneously several particles parameters set at little additional cost; as done in Février et al. (2005)
by simulating the fluid phase first and using it repeatedly while varying particles parameters. The
processing power needed to use these numerical methods is of the same order of magnitude as single
phase flow simulations with an increase of a factor two as it is an equivalent procedure with a larger
number of equations to solve. Another advantage of fully Eulerian simulations is that their cost is
independent of the number of particles, whose increase is represented by a change of the parameter
representing the local particle concentration. For models using Lagrangian tracking, the addition of
particles is more costly, as the simulation of discrete entities is a complex and expensive procedure.
The point particle model represents each particle as a point, therefore Lagrangian and Eulerian meshes
do not need to directly interact and there are no moving boundaries to consider. Moreover, an equation
is needed to describe the trajectory of each particle; and the size of the equation system increases
linearly with the number of particles so the number of particles considered is strongly limited by
the processing power available. Uhlmann (2005) uses 512 force points per particle, however, only
the fluid-particle interactions depend on this number. Because of the solid-body approximation the
solution of the particle motion scales with the number of particles. Finally, in their study the majority
of the computational cost was due to the simulation of the fluid. Consequently adding more particles
only added a marginal cost to the simulation. Similarly for the Physalis method, Prosperetti and Oguz
(2001) noted that the computational cost scales less than linearly with the number of particles.

1.11.2 Detection and processing of particle-particle collisions

Four-way coupled numerical simulations need to include a way to detect collisions between particles
and compute the resulting changes in velocity. Immersed boundary methods (Glowinski et al., 1999;
Uhlmann, 2005), bypass the issue with the addition of a fictitious repulsive force to avoid collisions.
Point particle models directly look for and simulate the effect of collisions. To detect collisions
in a simulation containing N particles, one can use a brute force method that checks for every
possible collision between any two particles. Scaling with N2, this method is simple to implement but
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inefficient. The scaling makes it an unattractive options when large numbers of particles are involved.
The efficiency can be improved by checking for collisions of a given particle only with particles in
their neighbourhood (Vance et al., 2006; Yamamoto et al., 2001; Zhao et al., 2006). The domain is
separated into cells, the particles are then sorted by cell, the collision detection procedure can then be
made independently for each cell. The efficiency of this method depends on the particle concentration
and the cell size. Mio et al. (2005) found that the optimal cell size should contains, on average, 0.7 to
0.8 particle. This value shows little variation with the particle size. The nearest neighbour method
assigns a radius to each particle. Only the particles within this radius are checked for a potential
collision. Both the cell and nearest neighbour method scale with N with the right choice of parameters,
making them significantly more efficient than the brute force method, at the cost of additional memory
needed to store information about particles.

1.11.3 Conversion from Eulerian to Lagrangian and Lagrangian to Eulerian frame
of reference

In the case of Eulerian-Lagrangian mixed simulations, the fluid data needs to be interpolated at the
particles position and, in turn, the particulate force is interpolated to the Eulerian mesh. In most
cases, polynomial interpolation is used to obtain the fluid data in the Lagrangian framework. Boivin
et al. (1998) and Vance et al. (2006) used respectively third and fourth order Lagrange polynomials.
Ferrante and Elghobashi (2003) used a Hermite cubic interpolation polynomial. The interpolation
from the Lagrangian to Eulerian mesh is done either independently for each particle or averaged.
Ferrante and Elghobashi (2003) distribute the particle force to the 8 surrounding nodes with a linear
projection. Averaging methods are studied in Zhu and Yu (2002) and Zhu et al. (2007), where the
local average X̄(r, t) of a property X(r, t) to interior cells can be generally written as:

X̄(r, t) =
ˆ

T1
∑

i
hiXi(τ)dτ , (1.91)

where h(r, t) is a weighting function.

1.12 Selection of the models used in this work

We have, in this Chapter, described some of the most common model used to describe particulate
flows as well as the tools used to study the stability of shear flows. A key choice in this work has been
the selection of the physical models used and the choice of problem to study. Let us go through the
methods chosen, with the explanations and justifications behind these choices.
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First, we have to consider the choice of the model used to describe the particulate flow. Our work
focuses on the transition to turbulence, and in particular the particles influence on the flow stability.
Therefore, the chosen model needs to take into account the effect of the solid phase on the fluid. Some
models do so while neglecting the effect of the fluid on the particles, e.g. the models presented in
Section 1.3. However, they require restrictions that would strongly limit the validity of any result.
Indeed, particles behaviour is nontrivial during transition and one should expect the solid phase to
have a significant effect on the fluid. Consequently, the model used needs to be two or four-way
coupled, reducing the number of available options. On the other hand, the more computationally
demanding models with a more accurate particle description, the fully Lagrangian and immersed
boundary methods, do not, in spite of their accuracy, suit the needs of this work. The aim of this work
is to investigate the transition to turbulence in a more general way and study different processes as
a function of the particles characteristics, requiring a large amount of runs to accumulate data. In
the interest of reaching the optimal trade-off between accuracy and cost-efficiency, two models were
used in this thesis: a fully Eulerian model, used in Chapter 2 and 3 and a Lagrangian-Eulerian model
with a point particle approximation in Chapter 4. These two models rely on fundamentally different
assumptions: the fully Eulerian model has a smaller parameters validity range and is less suited to the
study of particles behaviour. Moreover, it is valid for small, heavy particles in dilute distributions. In
this regime the Stokes drag is the dominant force and the other fluid-particles interaction force can be
neglected (more details are given section 2.1). The collisions between particles are also neglected
as we assume that the solid concentration is dilute. On the other hand, point particle model is more
realistic and versatile at the expense of the computational cost. As the point-particle code aims to be
valid for larger particles and higher particle volume fraction, other fluid-particle interactions forces,
such as the buoyancy and the added mass force, were added. Furthermore, collisions between particles
are also accounted for with a hard-particle collision model. The combination of these two models,
which possess different strength and weaknesses, allows for greater flexibility.

The second question is the choice of the tool to study the flow stability. There are many options
to approach the topic to transition to turbulence, we chose to begin with a linear stability analysis
using the fully Eulerian model. The continuous approximation made for the particle phase in the
fully Eulerian model allows to write the equations of motion as a linearised system which can
be solved numerically (see Section 2.4). Each run is then very fast, such that we could obtain a
significant amount of data-points over several parameters. The linear stability analysis give insight
on the asymptotic behaviour of flows. The linear stability analysis is complemented by a linear
transient growth study, also using the fully Eulerian method to describe the solid phase. The linear
transient growth aims to observe the flow stability at finite times, and in particular if it can lead to new
mechanism for instability. The point particle model is still in development. It has only been used to
study the behaviour of fully turbulent particulate flows, but it can be used to study transitional flows
or the stability of laminar flows to perturbations.



Chapter 2

Linear instability of particulate pipe flow
with a Eulerian description

In this chapter the linear stability of particulate pipe flows is studied using a fully Eulerian approach
for the description of the solid phase. This model used to describe the solid phase is similar to the
one introduced in Klinkenberg et al. (2011) and described in Section 1.4.2. While the fully Eulerian
model yields less accurate results than fully described particles, or even point-particles models, it has
the advantage of being significantly faster and requiring less computational resources. Moreover, the
consideration of independently defined objects is not suitable to the study of linear stability, as the
number of equations would quickly grow too large to be solvable through this method.

The limitations of the model used in this work are similar to the ones encountered for a single
phase flow linear stability analysis. Nonlinear interaction of the modes are not taken into account and
this model can describe neither the turbulent regime nor the nonlinear transient growth. There are
additional conditions due to the limitations of the Eulerian model. The model is considered in the
dilute limit, so interactions between particles such as collisions and clustering are neglected. Particles
are also assumed to be smaller than the characteristic scale of the flow, significantly heavier than the
fluid and of spherical shape.

Even when the flow is linearly stable, linear stability analysis still yields information on the
particles influence on the long term stability through the value of the perturbation growth rate. Linear
stability analysis is done by solving an eigenvalue system. Each computation is fast, of the order of
ten seconds using a single core of an average personal computer. This way we were able to obtain a
large number of data points and cover a wide range over the flow parameters.

U

r̂

θ̂

0

ẑ

r̂

Figure 2.1: Diagram of the geometry in this work. It is a pipe of length L and of radius r0, and the
coordinates used are, in the radial direction r ∈ [0, 1], where r is normalised by r0; the azimuthal
angle θ ∈ [0, 2π] and in the streamwise direction, z ∈ [0, L].
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2.1 Range of validity of the model

The fully Eulerian model used in this chapter is valid in the limit of small particles and low particle
volume concentrations. Moreover, the only force affecting the particles in this model is the Stokes
drag. Other forces often considered, such as the virtual mass force, the buoyancy, the Basset history
force, the Magnus and Saffman forces, are neglected. This choice is justified by the difference
in scaling with the particle size, a. Indeed, while the Stokes drag force, FD ≡ |6πaµU0|, depends
linearly on the particle radius, other forces have a quadratic or above dependency with the particle
radius. Therefore, the Stokes drag becomes dominant when a → 0 (Boronin and Osiptsov, 2008;
Klinkenberg et al., 2011). For the dimensionless problem, the dimensionless relaxation time is defined
as: S =

τp
τ f

= 2
9

a2

r2
0

ρp
ρ f

, with τp the particle relaxation time and τ f the fluid viscous time scale. In order
for S to remain finite as a → 0, one needs the particle density to scale with the particle radius such
that: ρp ∝ a−2. This leads to an additional condition, indeed the buoyancy force can be expressed as:

FB = (ρp −ρ f )
4
3

πa3g , (2.1)

the first term, called FB1 from now on, is proportional to ρpa3. If ρp ∝ a−2, then this term decays
linearly with a, similarly to the Stokes drag. Our model is only valid when the buoyancy is negligible
in front of the drag force. In order to determine the condition for which it is true, let us consider the
ratio between FD and FB1 is:

FD

FB1
=

4
3 πa3ρp g

6πaρ f ν U0
=

2
9

ρp

ρ f

a2 g
ν U0

. (2.2)

Equation (2.2) can be rearranged such that:

FD

Fb1
=

2
9

ρp

ρ f

a2

r2
0

r2
0g

νU0
=

2
9

ρp

ρ f

a2

r2
0

r3
0g
ν2

ν

r0U0
= S

Ga
Re

, (2.3)

where Ga =
r3

0g
ν2 is the Galilei number. Assuming a fixed value of S, buoyancy can be neglected

when Ga ≪ Re. There are other concerns to address when considering the averaging process of
the equations describing the solid phase behaviour, in particular equations closure. A summary of
the framework and assumptions made for averaged models is given in Jackson (2000). Neglecting
buoyancy allows us to treat the averaging process of this model as a simplified version of Jackson’s
approach in the limit of small particles. Lastly, the continuum approach requires the average distance
between particles to be as small as possible. This is valid in the limit of dilute particles only. The
particles volume ratio Vp/Vf scales as a3. On the other hand the particle mass fraction scales as:
f ∝ Nρpa3 ≡ Na−2a3 ≡ Na. It follows that, for a fixed value of f , N increases linearly as a decreases.
Therefore, as the particle radius decreases, the volume mass fraction decreases but the number of
particles increases. The average distance between particles can be approximated as < d >∝ 1/n1/3
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with n = N/Vf , using N ∝ a, < d > can be written, since V is constant, as < d >∝ 1/a1/3. While the
average distance between particles does increase as particles get smaller, the scaling is much slower
than the decrease in particle volume fraction as a decrease. Consequently, there exists a regime of
particles radius for which both the dilute regime assumption and a low average particle distance are
true. The parameter range studied in this chapter is:

• Vp/Vf < 10−2, with Vp/Vf corresponding to the particles volume fraction. This condition
ensures that the dilute assumptions made to neglect collisions is valid.

• f ∈ [0, 0.1]. As the particles are much heavier than the fluid and Vp/Vf = f ρp/ρ f , the dilute
suspension assumption is valid even in the case f = 0.1 when ρp/ρ f ≪ 1.

• S ∈ [10−4 ,10−1]; considering a density ratio between particles and fluid ρp/ρ f to be around
1600 (the ratio between air and sand) as an example, This corresponds to particle diameter/
pipe diameter ratio ranging from approximately a/r0 = 5×10−4 to a/r0 = 1.5×10−2.

• Re are considered up to Re = 106, the majority of the data lays between Re = 5× 102 and
Re = 104.

The ranges of particle volume ratio and particle size considered in this work fall within the assumptions
of dilute suspension with small particles made by the model.

2.2 Governing equations

The fluid phase behaviour is described using the standard Navier-Stokes set of equations to which a
Stokes drag force is added to account for the interaction between fluid and solid phases,

∂u
∂ t

=−∇p
ρ

− (u ·∇)u +ν∇
2u +

KN
ρ

(up −u) , (2.4)

m
∂up

∂ t
=−mN(up ·∇)up +KN(u−up) , (2.5)

∂N
∂ t

=−∇ · (Nup) , (2.6)

∇ ·u = 0, (2.7)

with u and up representing the fluid and particles velocities, N is the number of particles per unit
volume and p the pressure, ν is the fluid kinematic viscosity, m is a particle mass, K is the Stokes
drag (K = 6πaµ), with a the particle radius. Equation (2.4) describes the motion for the fluid
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velocity is the incompressible Navier-Stokes equation with an additional Stokes term for fluid-particle
interaction. Equation (2.5) gives the evolution of the continuous particle velocity using standard
momentum conservation without a pressure force and viscous dissipation. Equation (2.6) is the
continuity equation for particles, it ensures the conservation of the total number of particles. Equation
(2.7) is the standard mass conservation equation for an incompressible fluid. The boundary conditions
is for the fluid velocity, no slip at r = 1;

u(r = 1) = 0 . (2.8)

For the particles, only the non-penetration condition is kept, particles are allowed to slide against the
wall,

upr(r = 1) = 0 , (2.9)

The non-dimensional parameters for this problem are the Reynolds number, Re = ur0
ν

with r0 being the
pipe radius and ν the fluid kinematic viscosity. The mass concentration f = mp/m f , corresponding
to the ratio between the particles and fluid mass over the entire pipe. S = ν m

Kr2
0
= 2

9
a2

r2
0

ρp
ρ f

is the
dimensionless relaxation time. The value SRe is equivalent to a Stokes number. A small value of S
represents a small particle with a short relaxation time, adapting quickly to the flow. In the lower limit
S → 0, the particles behave as passive tracers. A large value of S implies larger particles with longer
timescales that are less affected by the flow. In the upper limit, S →+∞, the particles are decoupled
from the flow. In this case they do not have any influence on the flow stability. This non-physical
behaviour illustrates a limit of the model, which only applies to particles of small to moderate size.
The system of equations (2.4)-(2.7) can be, using the dimensionless parameters previously introduced,
non-dimensionalised to yield:

∂u
∂ t

=−∇p − (u ·∇)u +
1

Re
∇

2u +
f N

SRe
(up −u) , (2.10)

∂up

∂ t
= N(up ·∇)up +

1
SRe

(u−up) , (2.11)

∂N
∂ t

=−∇ · (Nup) , (2.12)

∇ ·u = 0 . (2.13)

N is normalised so that
´

NV dV = 1, for a given position x, N(x)> 1 implies than the local concen-
tration of particles is higher than average, N(x)< 1; the opposite.
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2.3 Linearised problem

The stability of the flow is studied through the addition of a small perturbation to the steady solution
for each variable. The base state is composed of U = (1− r2)ẑ, the Hagen-Poiseuille flow, for the
fluid velocity. Up is the base particle velocity and is assumed to be equal to U. N0 is the average
particles concentration.

u = U+u′ , up = Up +up
′ , p = P+ p′ , N = N0 +N′ . (2.14)

Linearising equations (2.10) - (2.13) around this base state yields:

∂tu′ =−∇p′ −U ·∇u′ −u′ ·∇U +
1

Re
∇

2u′ +
f N0

SRe
(u′

p −u′) , (2.15)

∂tup
′ =−up

′ ·∇U −U ·∇up
′ +

1
SRe

(u′−u′
p) , (2.16)

∂tN =−N0∇ ·u′
p −u′

p ·∇N0 −U ·∇N′ , (2.17)

∇ ·u′ = 0 . (2.18)

Equations (2.15), (2.16) and (2.18) are independent of N′, and Equation (2.17) is decoupled from the
other equations of the system. u′ and up

′ satisfy the same boundary condition as u and up. The set of
equations (2.15)-(2.18) is solved numerically with two different methods, a linear stability analysis
and a linearised Direct Numerical Simulation (LDNS). From now on the primes are dropped for the
sake of simplicity.

2.4 Linear stability analysis

Due to the linearity of the problem the modes are independent. Thus, a linear stability analysis study
the behaviour of a single mode at a time. The solutions to the linear set of equations can be written as
Fourier expansions with regards to the time:

g(r,θ ,z, t) = ĝ(r,θ ,z)e−iωt , (2.19)

with g being any of the fields of interest. Since our geometry is a pipe, there is by default a 2π-
periodicity in the azimuthal direction, a L-periodicity (where L is the pipe length) can also be assumed
in the streamwise direction for large values of L. The invariance of the problem along the azimuthal
and streamwise directions implies that the perturbation has a wave-like solution in these directions; a
Fourier decomposition can be used in the azimuthal and streamwise direction as well as in time. A
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field g can then be written as:

g(r,θ ,z, t) = ∑
α

∑
m

ĝ(r)ei(αz+mθ−ωt) , (2.20)

where α and m are the streamwise and azimuthal wavenumbers and are fixed for a given case.

It follows that Equations (2.15)-(2.18), with their associated boundary conditions (2.8) and (2.9),
can be written as a generalised eigenvalue problem:

iωAφ = Bφ , (2.21)

where ω is the eigenvalue and φ = (ûr, ûθ , ûz, p̂, ˆupr, ˆupθ , ˆupz)
T the variables, also called eigenfunc-

tions. The imaginary part of the eigenvalue, ℑ{ω} corresponds to the flow asymptotic growth rate.
For a given pair of modes (α,m), A and B are defined as:

diag(A) =
[
−1 −1 −1 0 −1 −1 −1

]
, (2.22)

B =



a1 −2im
r2 0 −∂r

f N0
SRe 0 0

2
Re

im
r2 a1 0 − im

r 0 f N0
SRe 0

−U ′ 0 a3 −iα 0 0 f N0
SRe

∂r
r + 1

r2
im
r2

iα
r 0 0 0 0

1
SRe 0 0 0 −Uiα − 1

SRe 0 0

0 1
SRe 0 0 −iUα − 1

SRe 0 0

0 0 1
SRe 0 −U ′ 0 −iUα − 1

SRe



, (2.23)

with:

a1 =−iUα +
1

Re

(
∂

2
r +

1
r

∂r −
m2 +1

r2 −α
2
)
− f N0

SRe
, (2.24)

and

a3 =−iUα +
1

Re

(
∂

2
r +

1
r

∂r −
m2

r2 −α
2
)
− f N0

SRe
. (2.25)

In order for the system to be solved numerically the problem needs to be discretised. In the radial
direction, the value of the variables is approximated using the Chebyshev polynomials T spanning



2.5 LDNS simulation 63

from r = 0 to 1,

ĝ(r) =
M

∑
n=1

ḡnTn(r) , (2.26)

where Tn is the nth Chebyshev polynomial. ĝ(r) is approximated using M Chebyshev polynomials.

To discretise in the radial direction, M points are taken. These points are placed at the Chebyshev
roots that have a higher concentration close to the centre and the wall of the pipe, where accuracy is
most needed. The points are defined by:

rl = cos
(

2l −1
2M

π

)
, l = 1, ...,M . (2.27)

A and B are matrices of size 7M×7M. The boundary conditions are included by replacing the last
six rows of the matrices. This does not affect the rest of the problem if the number of Chebyshev
polynomials is high enough. The resulting discretised problem is solved in Fortran using the LAPACK
library.

2.5 LDNS simulation

A linearised version of a DNS code is implemented with the solid phase modelled using the same
fully Eulerian method and the same set of equations, in order to cross-check the results obtained by
the linear eigenvalues simulations.

The basis for the LDNS computation is a well established code for the simulation of single phase
pipe flow (Willis, 2017). It has been modified to account for the presence of particles, and incorporates
Equations (2.15)-(2.18). The code uses a fourth order implicit finite difference scheme, the grid points
in the radial direction are defined using Gauss-Lobatto collocation points, and Fourier transforms in the
azimuthal and streamwise direction. The variable is represented as f(r, t,z) =∑k,m k(r)akmei(αkz+m0mθ).
Temporal discretisation is done through a second-order predictor-corrector scheme. More details on
the code are given in Section 3.3. The growth rate of the leading eigenvalue is proportional to the
energy decay rate of the flow in the limit of infinite time. Indeed, as the leading eigenvalue is the
slowest to decay, the effect of all others eigenvalues become negligible as the time grow large enough.
In order to assess whether a given time large enough for the decay rate to converge, we considered
two intervals of time, [t1, t2] and [t3, t4]. The average decay rate over each interval is computed. If
the difference between the two decay rates is below a chosen threshold, we consider the run to have
converged.



64 Linear instability of particulate pipe flow with a Eulerian description

Number of Chebyshev modes Re = 104 Re = 106

70 2.4015×10−4 4.2460×10−1

100 1.1451×10−4 3.2291×10−2

150 4.7985×10−5 4.1129×10−5

200 2.4848×10−5 1.5846×10−5

300 8.4055×10−6 9.4246×10−6

Table 2.1: Normalised difference ℑ{ω}−ℑ{ω}M=500

ℑ{ω}M=500 between the growth rate and its converged value
(using 500 Chebyshev polynomials) for the single phase flow, (α,m) = (1,0).

Number of Chebyshev modes S = 10−4 S = 5×10−2

100 3.1458×10−5 8.8386×10−2

150 1.3681×10−5 3.7026×10−4

200 5.1509×10−6 1.9357×10−4

300 1.1547×10−6 7.1197×10−5

Table 2.2: Normalised difference ℑ{ω}−ℑ{ω}M=500

ℑ{ω}M=500 between the growth rate and its converged value

(using 500 Chebyshev polynomials) for the particulate flow with (α,m) = (1,0) and Re = 104.

The LDNS is much slower than the eigenvalue solver as it needs to simulate the flow at large
times. Therefore, the LDNS was only used to verify the growth rates found with the eigenvalue solver
in Section 2.6.2.

2.6 Validation of the numerical simulations

2.6.1 Convergence tests

To validate the code, the leading eigenvalues of the single phase flow, corresponding to f = 0, are
compared with the results from Meseguer and Trefethen (2003). For the wavenumbers (α,m) = (1,0),
the relative error is below 10−9 for 100 Chebyshev polynomials for any Re < 104. For (α,m) = (1,1),
the relative error is higher, close to 10−7 for both Re = 103 and Re = 104. For (α,m) = (1,1), the
relative error is of 10−9 for Re = 1000, and 2.87×10−9 for Re = 104.
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Re α m Eigenvalue solver LDNS ε

1000 0 1 −1.4682×10−2 −1.4681×10−2 5.5853×10−5

3000 0 1 −4.8940×10−3 −4.8866×10−3 1.5121×10−3

5000 0 1 −2.9364×10−3 −2.9344×10−3 6.9658×10−4

1000 1 0 −7.0864×10−2 −7.0898×10−2 4.7956×10−4

3000 1 0 −4.1276×10−2 −4.1317×10−2 1.0131×10−3

5000 1 0 −3.2043×10−2 −3.2087×10−2 1.3604×10−3

1000 1 1 −9.0443×10−2 −9.0483×10−2 4.3953×10−4

3000 1 1 −5.1973×10−2 −5.2018×10−2 8.7257×10−4

5000 1 1 −4.0200×10−2 −4.0246×10−2 1.1504×10−3

Table 2.3: Single phase flow comparison, ε = |ωlsa−ωLDNS|
ωLDNS

, dt = 10−3.

The convergence of the results as a function of the number of Chebyshev polynomials has been
verified as well. Table 2.1 and Table 2.2 show the relative difference with the fully converged value
using 500 polynomials, for the single phase and particulate flows respectively. The convergence
for the single phase flow is fairly good with a relative difference of the order of 10−4; even for 70
Chebyshev polynomials in the case Re = 104, this result holds true in the lower range of Reynolds
numbers. Convergence is slower for very high Reynolds numbers, but it is not a large concern as these
Reynolds numbers are outside our span of interest.

For the particulate flow, the relative error ε is higher; 10−2 for some combinations of parameters;
in these cases a higher number of Chebyshev polynomials (150 or 200) were used. ε increases for
higher values of S and f , from ε = 10−6 for S = 10−3 to ε = 10−5 for S = 0.1 and 100 and 150
polynomials. The effect of α on ε is less pronounced, with a relative error difference below 10% with
every other parameters fixed. The convergence is also slower for m = 1.

2.6.2 Comparison between eigenvalue solver and LDNS computation

Table 2.3 and Table 2.4 show the leading eigenvalue found with linear stability analysis and LDNS
simulation, for a single phase and particulate flow respectively. The normalised difference is always
below 10−3, and the difference also tends to be lower for lower values of Re and S. For single phase
flows, the difference between Meseguer values and our data is smaller in the case of the linear stability
analysis than for the LDNS, either because Meseguer and Trefethen (2003) used linear stability
analysis as well, or because the LDNS gave a less accurate growth rate.
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S α m Eigenvalue solver DNS ε

10−4 0 1 −1.4526×10−2 −1.4526×10−2 5.5075×10−6

10−3 0 1 −1.4536×10−2 −1.4523×10−2 8.3513×10−4

10−2 0 1 −1.4513×10−2 −1.4501×10−2 8.7025×10−4

10−1 0 1 −8.4935×10−3 −8.4931×10−3 4.8274×10−5

10−4 1 0 −8.9988×10−2 −9.0029×10−2 4.5108×10−4

10−3 1 0 −8.9981×10−2 −8.9977×10−2 4.7790×10−5

10−2 1 0 −8.9791×10−2 −8.9855×10−2 7.5478×10−4

Table 2.4: Particulate phase flow comparison, ε = |ωlsa−ωLDNS|
ωLDNS

, Re = 1000, f = 0.01, dt = 10−3.

2.7 Linear stability analysis of the flow with homogeneous particle dis-
tribution

At first, a uniform particle distribution N0 in the pipe is considered. In this case, ∇N0 = 0 in Equation
(2.17), and the particle concentration f N0 is constant in Equation (2.15). The least stable eigenvalue
ωp tends towards zero as the Reynolds number increases but remains negative for all Reynolds
numbers considered, such that the flow remains linearly stable. This result holds true in all studied
cases. It can be concluded that the addition of uniformly distributed particles is not sufficient to
introduce linear instability in a pipe flow with the two-fluid model.

2.7.1 Topology

Figure 2.2 shows the eigenvalue spectra for single phase and particulate flows. Both spectra have a
similar shape where the classical A, P, S branches are clearly defined, with the leading eigenvalue
located in the ‘P’-branch for both single phase and particulate flows (Mack, 1976). This holds true for
all values of f and S. The changes in eigenvalues due to the addition of particles are mild, with the
shape of the spectrum qualitatively unchanged.

2.7.2 Eigenmodes profiles

It is possible to retrieve the radial velocity profile from the eigenvectors q: û(r) = ∑
N
n qnTn(r).

Figure 2.3 shows the distribution of the fluid energy in the leading eigenmode (located in the A-
branch as seen in Figure 2.2) for various Reynolds and dimensionless relaxation times. The amplitude
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Figure 2.4: Normalised growth rate, λ ′
p, as a function of f for S = 10−3 (red), S = 10−2 (green),

S = 10−1 (blue) with Re = 1000, α = 1 and m = 0 (left) or m = 1 (right). In all cases examined, λ ′
p

is very close to being linearly proportional to f .

of the eigenvalue obtained has no physical meaning, therefore, it has been normalised for ease of
read. For all the considered cases, the energy is concentrated close to pipe centre, between r = 0.15
and r = 0.3. There is a second, much smaller peak closer to the wall (at r ≃ 0.4−0.5). There are
variations as a function of S and Re but they do not seem to form a pattern.

2.7.3 Effect of the Reynolds number Re and particle concentration f

We now consider the leading eigenvalues of the particulate flow normalised by the leading eigenvalue
of the single phase flow with the same Reynolds and wavenumber in order to highlight the particles
effect on the growth rate:

λ
′
p(Re,α,m, f ,S) =

ℑ{ωp(Re,α,m, f ,S)}
ℑ{ω f (Re,α,m)}

. (2.28)

Assuming that both ℑ{ωp} and ℑ{ω f } are negative, λ ′
p > 1 implies that the growth rate is smaller

(more negative) due to the addition of particles. It can be interpreted as a stabilising effect on the flow.
If λ ′

p < 1; the effect is opposite, the growth rate of the particulate flow is closer to 0. In the critical
case, λ ′

p = 1, the addition of particles has no effect on the stability.

Let us focus first on the influence of the particle concentration, for a given α , Re and S. We
consider f ∈ [10−4,0.1], as the model loses its physical relevance for f > 0.1.

Figure 2.4 shows λ ′
p as a function of f for Re = 1000 for various values of S and both m = 0

and m = 1. The normalised eigenvalue depends almost linearly on the mass concentration f for all
values of S, regardless of whether the flow is stabilised or made less stable by the addition of particles.
If λ ′

p > 1 for any given value of f , then λ ′
P > 1 for all f , this results holds true for all values of Re,

S, α and m considered. Consequently, f has no influence on whether adding particles will have a
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Reynolds number Particulate flow Single phase flow Normalised error

Re ℑ{ωp} ℑ{ω f } (ℑ{ωp}−ℑ{ω f })/ℑ{ω f }
103 −9.035363×10−2 −9.035360×10−2 2.11979×10−5

5×103 −4.020116×10−2 −4.020116×10−2 9.436171×10−8

104 −2.838510×10−2 −2.838510×10−2 3.883010×10−8

105 −8.954544×10−3 −8.954547×10−3 5.844879×10−7

Table 2.5: Comparison of leading growth rates between single phase and particulate flows for S → ∞

(numerically, we fixed S = 103), theoretically, ℑ{ωp}= ℑ{ω f }.

stabilising effect on the flow or not. Moreover, as the relation between λ ′
p and f is almost linear, if one

knows how the the value of λ ′
p for a given f , it is straightforward to extrapolate a reasonably accurate

approximation of λ ′
p for any f . The linear relation between f and λ ′

p seems at first glance to be an
artefact of the simplified system of equations used in this work. However, we were unable to find the
relation through theoretical analysis. f can be removed from the list of relevant parameters without
losing information besides the magnitude of the effect. For the uniform problem, we fix f = 0.01,
keeping in mind that effect sizes would be increased with f . The flow stays stable as Re → +∞,
consequently, we expect the variation in eigenvalue due to the particles not to increase with Re; this
is confirmed in Figures 2.5 and 2.6. The particles only have limited effect on the growth rate of the
perturbations (the difference is below 5%), although this value depends on the f . For S = 10−3, the
normalised growth rate λ ′

p only varies slightly as a function of Re. The values for m = 0 and m = 1
are almost equal, except for a small peak below Re = 1000 for m = 1. There is more variation for
S = 10−1 and S = 10−2; the effect of the solid phase gets smaller as Re increases, with λ ′

p → 1 as
Re →+∞.

2.7.4 Influence of the relaxation time S

The effect of particle size or relaxation time is represented by the variation of λ ′
p with S, for fixed

values of Re, f and α . We recall that S is a measure of either the particle size or the density ratio but
is not directly linked to the concentration.

2.7.5 Effect on the growth rate in the small and large Stokes limits

In the ballistic limit S →+∞, Klinkenberg et al. (2011) found that in the case of a plane Poiseuille
flow, particles are too massive to be affected by the flow and the particle motion becomes independent
of the flow. This is true for the pipe flow as well, as shown in Table 2.5. The growth rate for S →+∞
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Figure 2.5: Normalised leading growth rate, λ ′
p for m = 0 as a function of Re, for S = 10−3 (line),

S = 10−2 (dots), S = 10−1 (dashed) with f = 0.01, α = 1 and m = 0. While the largest and smallest
values of S present straightforward, monotonic behaviour, the intermediate S = 0.01 presents non-
trivial variation with the Reynolds number.
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Figure 2.6: Normalised leading growth rate, λ ′
p for m = 1 as a function of Re, for S = 10−3 (line),

S = 10−2 (dots), S = 10−1 (dashed) with f = 0.01, α = 1 and m = 1. The behaviour for S = 10−3 is
very similar to the streamwise independent case. The other cases are more distinct, both converges
towards 1 as Re increases.
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Re(Re′) f α ℑ{ωp(Re)} ℑ{ω f (Re′)} Normalised error

103(1.1×103) 0.1 1 −8.614154×10−2 −8.615602×10−2 1.680672×10−4

104(1.1×104) 0.1 1 −2.706733×10−2 −2.706213×10−2 1.921504×10−4

103(1.1×103) 0.05 1 −8.818362×10−2 −8.818405×10−2 4.876165×10−6

104(1.1×104) 0.05 1 −2.769711×10−2 −2.770116×10−2 1.462030×10−4

103(1.1×103) 0.1 2 −6.191476×10−2 −6.194126×10−2 4.278247×10−4

104(1.1×104) 0.1 2 −3.850213×10−2 −3.850214×10−2 1.688218×10−8

Table 2.6: Comparison of leading growth rates for S → 0 (numerically, we fixed S = 10−6).

is very close by the growth rate of the single phase flow, the difference due to numerical error. The
limit S → 0 corresponds to small particles with a small relaxation time. The particles behave like
passive tracers, they closely follow the fluid and do not affect the behaviour of the flow. However, as
particles, much heavier than the fluid, are added to the flow, its average density is increased by a factor
(1+ f ). Consequently, the effective Reynolds number of the flow becomes Re′ = Re(1+ f ). This
implies that if the growth rate of a particulate flow obtained at a Reynolds number Re is equal to the
growth rate of the single phase flow at a Reynolds number Re′ = (1+ f )Re, both exhibits identical
properties, the difference in growth rate only being due to a difference in average density. This is what
occurs when S → 0, as illustrated in Table 2.6 which shows examples of growth rates for particulate
flows and single phases flow with Reynolds numbers Re and (1+ f )Re respectively, for S = 10−6.
The normalised difference is consistently below 5×10−4. In this case, the addition of particles makes
the flow less stable, but only through the modification of the average density of the fluid. Klinkenberg
et al. (2011) found a similar result in the case of the plane Poiseuille flow. It has also been found that
the normalised leading eigenvalue stays almost constant for S in the range 10−7 to 10−4.

2.7.6 Effect on the growth rate for moderate values of S

Figure 2.7 shows the variations of λ ′
p with S for fixed values of Re and α respectively. All curves

have the same shape. λ ′
p first decreases for small particles, reaching a minimum λ

′m
p for a relaxation

time Sm. λ ′
p then increases above one for larger particles; in this case the addition of particles makes

the flow further away from linear instability. A similar result has been found in Klinkenberg et al.
(2011) for a plane particulate Poiseuille flow. A maximum λ

′M
p is then reached for a relaxation time

SM; λ ′
p converges towards unity as S → +∞. The range around the two peaks can be described as

an “effective range” where the flow is most affected by the particles and where the effect changes
sharply with little particle size variation. The curves are shifted towards smaller relaxation time as the
Reynolds number increases.
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Figure 2.8: The variation of Sm with Re and α . The data can be collapsed down on to a single line
by using an appropriate rescaling for the Reynolds and wavenumbers. Left: SmRe−0.52 (exponent
approximated up to two significant digits) as a function of α . The collapsing of the data onto a single
line suggests that Sm ∝ Re0.52. Right: Smα−0.53 as a function of Re. The data again collapses onto a
single line, though not as cleanly as for the scaling in Re. Nonetheless, suggesting that Sm ∝ α−0.53.

The overall shape of the variations of λ ′
p as a function of S is almost invariant when α varies

as seen in Figure 2.7. However the peak is larger and the following slope is less steep for small α ,
suggesting that perturbations with smaller wavenumbers are affected by a broader range of particles
size, but for larger wavenumbers, small changes in particle size can have greater effects. Both extrema
shift towards smaller values of S as α increases, this implies that perturbations with shorter wavelength
are more affected by smaller particles. Similarly, the extrema shift towards smaller values of S as Re
increases. This can be explained by the dampening of the viscosity when the Reynolds number gets
higher, allowing for smaller scale dynamics.
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different cases.

2.7.7 Reynolds and wavenumber scaling

Let us now analyse the positions and values of the extrema of λ ′
p(S) in order to determine which

dimensionless relaxation time has the most effect on the linear stability. Using the two scaling
simultaneously, Figure 2.8 shows that for any value of f from 10−3 to 10−1, all data points collapse
when normalised by Re−0.52 and α−0.53. Depending on the case, the standard deviation is quite low,
ranging from 1.2×10−3 to 3.2×10−3.

Figure 2.9 shows that Sm also scales with f . However, the scaling is weak, with a variation under
10% for values of f spanning three orders of magnitude. The scaled value also shows some variation
along a fixed f , but this variation is fairly low, below 10%.

Although the addition of particles for a homogeneous particle distribution only has a small to
moderate effect on the growth rate, a non trivial relationship as a function of the relaxation time is
still observed. There are physical explanations for the direction of the scaling with Re and α (as
mentioned in Section 2.7.6). However, there are no physical or mathematical explanations, as far as
our knowledge goes, for the values if the scaling. This dimensionless relaxation time for which the
flow is most affected follows a scaling law with both Re and α .
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2.8 Nonuniform particle distributions

So far, only uniformly distributed particles have been considered. This is however not inherent to our
fully Eulerian model and one can introduce nonhomogeneous particle distributions, allowing us to
consider a more general problem. Moreover, as discussed in Chapter 1, experimental work suggests
that for low to moderate Re, particles congregate at a particular radius forming an annulus from their
distribution centred in the region closer to the wall, at a radius between r = 0.5 and r = 0.8 (Jeffrey
and Pearson, 1965; Matas et al., 2004b; Segre and Silberberg, 1962). From now on, we capture the
essence of this by considering particle distributions varying in the radial direction, described by a
function of the form:

N(r) = Ñ exp{−(r− rd)
2/2σ

2}, (2.29)

with Ñ chosen such that
´ 1

0 N(r)rdr = 1. We still consider a uniform distribution over the azimuthal
and streamwise direction. The choice is made to only consider Gaussian distributions, as they are
simple and relatively close to what is observed experimentally, as seen in Section 2.9. However, in
some cases the particles are shown to congregate over two distinct radius (Matas et al., 2004b) or in a
non-symmetrical distribution. This work could be expended by considering more complex distribution
without needing further modifications to the model. Until the end of this chapter, in order to reduce the
set of parameters being considered, a portion of the problem parameters are fixed: S = 10−3, f = 0.1
and m = 1. The values chosen for S and f are consistent with experimentally realistic parameters (see
Section 2.9) while m = 1 is the only azimuthal wavenumber for which we observed linear instability.

2.8.1 The onset of instability

Figure 2.10 shows the leading eigenvalues for a localised distribution of particles at r = 0.6 compared
with the uniform distribution result for both the A-branch and P-branch. While the uniform particle
distribution remains stable for all Re, the non-uniform distribution is linearly unstable. As the particles
are non-homogeneously distributed, the local particle concentration is significantly higher at the
radius r = rd than in the case of an homogeneous distribution. It could be considered that the particle
concentration going over a threshold could produce linear instability. However, a homogeneously
distributed flow whose particle concentration is everywhere as high as the local particle concentration
at r = rd of a linearly unstable flow is found to still be linearly stable. It follows that the linear
instability is caused in part by the the gradient of particle concentration. Moreover linear instability
only occurs for moderate Reynolds number, but not for either high or low Re. This result, albeit
counter-intuitive, consistently holds for all cases studied. It can be explained by the Stokes term being
proportional to 1/Re (Equations 2.10 and 2.11) i.e. for very large Re, there is no coupling between the
fluid and solid phases, hence the flow is stable. For low Re, diffusion dominates and imposes stability.
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Figure 2.10: The leading eigenvalues of the A- and P branches for uniform (black) and non-uniform
particle distributions, centred at r = 0.6 (red). The dashed lines represents the P-branch, the solid
line the A-branch. The uniform distribution is stable for all Re, but the non-uniform distribution is
unstable for a range of Re. For higher Re the leading eigenmode switches between A and P branches
for the non-uniform distribution at the point where the two red lines meet on the graph.

Of note, the coupling between fluid and particles decaying linearly as the Reynolds number increases
in only true insofar as only the Stokes drag is considered. Therefore, the fact that the flow is linearly
stable for very high Reynolds numbers would not necessarily hold true for different parametric regimes
where other coupling forces have to be considered. Therefore, linear instability is only feasible for
intermediate values of the Reynolds number. Another point is that while the change is quite dramatic
for the leading eigenvalue of the A-branch, the leading eigenvalue of the P-branch, which is the least
stable eigenvalue in the single phase flows and particulate flows with uniform distribution, is much
less affected by the change in the particle distribution. For higher Re, after the flow has restabilised,
we observe that there is a switching of the leading eigenvalue at around Re = 6000− 8000, after
which the dominant eigenvalue appears to be the same as for the uniform problem. The eigenvalue
spectrum (Figure 2.11) shows that for an unstable configuration, the leading eigenvalue is not in the
P-branch as in the case of both the non-particulate and uniformly distributed problems but rather in
the A-branch. This is in agreement with what is shown in Figure 2.10. The reason for the switching
of the least stable eigenvalue from the P-branch to the A-branch can be explained by looking at the
eigenmodes associated with the leading eigenvalues for a homogeneous and nonhomogeneous particle
distributions and how they differ. In Figure 2.12, the leading eigenmodes of the two branches are
plotted for a homogeneous distribution and a nonhomogeneous one with rd = 0.7 and σ = 0.1. The
overall shape is relatively insensitive to the distribution of particles, but the modes of the two branches
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Figure 2.11: Eigenvalue spectra for the non-particulate (green) and particulate cases (red). In both
cases, Re = 1000, α = 1 and m = 1 while the particles were non-uniformly distributed with f = 0.1,
rd = 0.6 and σ = 0.1.

are primarily active in different parts of the pipe. For the P-branch, the eigenmode is localised at a
closer to the centre of the pipe (with the eigenmodes centred around at r ≃ 0.3). This is similar to what
was observed in Figure 2.3 for a uniform particle distribution. On the other hand, the A-branch mode
is located closer to pipe wall (r ≃ 0.7). It is therefore unsurprising that when the particle distribution
is centred near this outer location, these are the eigenmodes that are primarily excited, as seen in
Figure 2.10. Figure 2.13 shows more eigenmodes energy distribution for varying values of rd . In the
case Re = 500 (left graph), all the modes are associated to linearly stable cases while most modes are
unstable in the case Re = 1500. The eigenmodes profiles are not significantly affected by whether
their associated eigenvalue is unstable or not. All profiles have two peaks, one situated between
r = 0.5 and r = 0.7, and another between r = 0.75 and r = 0.9; their shape is, however, dependent on
rd . Some cases have a peak closer to the centre which is almost an order magnitude larger than the
other, such as rd = 0.65 in Figure 2.13, while other cases have peaks of near-equal magnitude, for
example when rd = 0.70.

In addition to being unstable for a finite range of Re, the flow is also only unstable for a finite range
of streamwise wavenumbers α as illustrated in Figure 2.14. For both small and large wavenumber
disturbances, the flow is stable. The later is to be expected due to the stabilising influence of viscosity,
but it is important to note that the instability exists at very moderate wave numbers for which the
model is valid.
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Figure 2.14: The particulate flow three leading growth rates for Re = 1000, m = 1, f = 0.1, S = 10−3,
rd = 0.65 and σ = 0.1. Instability (ℜ{ω}> 0) occurs for a finite range of α .

2.8.2 Effect of the particle concentration and streamwise wavenumber on the critical
Reynolds number

Figure 2.15 gives neutral stability curves for varying values f and rd . Slight changes of either f or
rd have drastic effects on the stability, even as all others parameters are kept constant. All curves
are closed, confirming the restabilisation with increasing Re (and α). The cut-off values of α for
which linear instability is observed is dependent on the other flow parameters, but the minimum and
maximum values of α where linear instability are observed are in the same region, between α = 0.5
and α = 2.5. The left graph in Figure 2.15 illustrates the purely destabilising effect of the particle
concentration f . The unstable area of a smaller f is entirely comprised inside the one of a larger f ,
forming concentric circles.

On the other hand, there are overlaps when varying rd , the size of the unstable area as well as
the minimum Rec change with rd . The overall shape of the contour is also dependent on rd , while in
all cases Rec only weakly depends on α , with the exception of the edges where the value of α for
which Rec is minimised can significantly vary with rd and α . The maximum Re for which the flow is
unstable mostly depends on α .
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Figure 2.15: Upper: Contours of neutral stability in Re−α space for values of f and rd , the enclosed
region is the unstable region. Left: Fixed f = 0.075, rd = 0.55 (black), rd = 0.60 (blue), rd = 0.65
(red), rd = 0.55 (green). Right: Fixed rd = 0.7, f = 0.055 (green), f = 0.065 (blue), f = 0.075 (red).

2.8.3 Effect of the radial distribution of particles

The exact location where the particle concentration annulus, rd , is centred as well as how sharply
the distribution peaks around this location is of critical importance in determining whether the flow
becomes unstable or not. By searching over α we can trace out neutral stability contours in Re− rd

space for differing values of σ (Figure 2.16). The enclosed regions are unstable, all the contours
are closed. The fact that there is a minimum/maximum value of Re for which the flow is unstable
is consistent with our earlier observations, while the fact that there are bounds on the value of rd

supports the hypothesis of needing to excite the P-branch in order to destabilise the flow. We note that
for all values of σ the curves are concentric and the broadest range of unstable Re occurs when rd is
in the region 0.6−0.7.

We track the maximum and minimum values of rd for which instability exists in Figure 2.16
(lower). There is a maximum value of σ beyond which instability isn’t possible, this is coherent with
our earlier findings. Indeed, in the case of an homogeneous particle distribution the flow is always
linearly stable, and as σ increases the particle distribution becomes more similar to an homogeneous
particle distribution. The minimum degree of localisation required to trigger instability corresponds
to σ∗ = 0.111, for which the particle distribution must be centred at r∗d = 0.666.

2.9 Relevance to experimental configurations

As mentioned in Section 1.9.2, particles have been experimentally observed to converge at a certain
radius in pipe flows. Matas et al. (2004b) notably highlight the clustering of particles at preferential
radii but they do not report evidence of a linear instability. This springs our motivation for the
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Figure 2.16: Upper: Contours of neutral stability in Re− rd space for values of σ = 0.110 (purple),
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All the contours are closed, which indicates that there is a maximum/minimum value of both Re and
rd for which flow is unstable. Lower: The maximum (solid)/minimum (dashed) values of rd for
which the flow becomes unstable as σ is varied, across all Re and α .

following section where we analyse the configurations observed by Matas et al. (2004b) and show
that our numerical results are consistent with the experiments - i.e. we find the configurations to be
linearly stable. In the experimental work, four configurations of particles are explicitly given (see
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Figure 2.17), corresponding to Re = 67, 350, 1000 and 1650, from top right to bottom left. At low
Re, all the particles cluster at a single radius consistent with the behaviour observed in Segre and
Silberberg (1962). As Re is increased, two preferential radii emerge and coexist. We capture these
distributions within the linear stability analysis with two approaches. Firstly, we fit either one or
two Gaussian distributions through the data using least squares. These fits and the corresponding
fitting parameters are those given in 2.17. Secondly, the raw data from Matas et al. (2004b) is used to
produce a discontinuous distribution, the value N0(r) being estimated constant between any two mesh
points (see Figure 2.17).

Re S λ f λG λd

67 2.743×10−3 −0.58409 −0.55828 −0.56033
350 2.743×10−3 −0.14605 −0.17752 −0.16606

1000 7.689×10−4 −9.1143×10−2 −0.10635 −0.10480
1650 7.689×10−4 −7.4771×10−2 −9.9083×10−2 −9.4478×10−2

Table 2.7: Comparison of leading eigenvalues for the linear stability problem obtained in cases without
particles, with particle distributions experimentally found by Matas et al. (2004b), and the closest
Gaussian fit respective of particle distributions.

Table 2.7 gives the growth rates of the leading eigenvalues for a non-particulate flow (λ f ), particles
distributed continuously (λG), and distributed discontinuously (λd) for the four different configurations
reported by Matas et al. (2004b). For the lowest Reynolds number, Re = 67, both distributions of
particles reduce the stability of the flow, but not so far as to make it unstable. On the other hand, for
higher values of Re the particles have a stabilising effect on the flow. These effects apply to both the
Gaussian and discontinuous particle distributions, all growth rates agree within 7%, much less than
the discrepancy with the non-particulate case. We conclude that within the set of cases experimentally
studied, our numerical results are fully consistent with the observations.
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Figure 2.17: Particles concentration as a function of the radius. The crosses show the experimental
results of Matas et al. (2004b) while the lines are our fitted distributions. The top two graphs, (Re = 67
(left) and Re = 350 (right)) were fitted using a single Gaussian distribution centred at rd and of width
σ . For the bottom graphs (Re = 1000 (left) and Re = 1650 (right)) each set of data was fitted with the
sum of two Gaussian distributions.

2.10 Conclusion

We studied the effect of the addition of particles on the linear stability of particulate pipe flows with a
fully Eulerian method. For homogeneous particle distribution, the effect is limited; the particulate
pipe flow remains stable for all parameters considered. The effect of the particle mass concentration f
is monotonic and almost linear. Re also has a limited effect on the growth rate which tends to decrease
as Re increases. The effect of the dimensionless relaxation time on the growth rate shows a more
complex behaviour, with a nonmonotonic curve and two extrema. Moreover, both these extrema scale
with α and Re.

Nonhomogeneous particle distribution have also been studied in the form of Gaussian distributions
centred around a radius rd with a standard deviation σ , close to the particle distribution observed
experimentally in Matas et al. (2004b). The addition of particles has a much stronger influence on the
linear stability of the flow for nonhomogeneous particle distributions, and linear instability occurs for
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a window of Re and α , condition to the azimuthal wavenumber m = 1. Interestingly, linear instability
only occurs for intermediate Reynolds numbers. This intermediate regime is sandwiched between
low Re flows dominated by viscous diffusion and high Re flows where fluid and solid phase are not
coupled any more. The effect of particles gets stronger as particles get more clustered, corresponding
to a decrease of σ in our problem. The radius where particles are positioned is a critical parameter.
Closer to the pipe centre, for rd < 0.3, particles have a stabilising effect on the flow; for 0.4 < rd < 0.9,
the particles strongly destabilise the flow. The particles’ influence is strongest around rd ≃ 0.66,
close to the peaks observed in the eigenfunctions in Figure 2.12 and to the Segré-Silberberg radius.
Another point only briefly mentioned are physical explanations for the effect of particles on the flow.
Giving the physical mechanism leading to our results is tricky as our model is fairly simplistic and
not completely realistic, we can still make hypothesis as the most likely mechanisms. In case of
smaller particles, linear instability is possible, but only when the particles are concentrated where
the eigenfunction is the highest. The instability is possibly caused by the particles excite one of
the mode of the perturbation, with the effect magnified around rd ≃ 0.65. Larger particles have a
stabilising effect on the flow, possibly due to the increased dissipation added by the Stokes drag
(Klinkenberg et al., 2011). The results obtained in this Chapter are not sufficient to give a full picture
of transition to turbulence in particulate flows as only linear stability is considered and some of the
physical mechanisms have been neglected. The linear instability found within this framework reveals
a new possible transition scenario and highlight the complexity of the problem.



Chapter 3

Linear transient growth of the particulate
pipe flow

As seen in Chapter 2, the addition of particles can, within the framework of the Eulerian model used,
lead to linear instability in a pipe flow. Even when the particulate flow is linearly stable, interactions
between the disturbance and the underlying flow can lead to large distortions of the base flow due
to the non-normality of the linear problem, such that perturbations can still experience growth at
finite time (Bergström, 1993; Waleffe, 1995). The linear stability analysis allowed the study of the
asymptotic behaviour of the particulate flows and showed that the addition of particles could have
a drastic impact. The main goals of this linear transient growth study is to observe the effect of the
particles on the stability at finite times, and in particular if it can lead to new mechanism for instability
in the case of nonhomogeneous particle distributions. This transient growth can lead to different
mechanisms for the transition to turbulence. The subsequent chapter deals with the transient growth
of particulate flows. The model used for the particles is the same two-way coupled, fully Eulerian
method used in Chapter 2. In this chapter, we study the effect of the particles on the energy stability
as well as the transient growth and the velocity profiles associated.

3.1 Theory

As discussed in Section 1.8.2, the transient growth corresponds to the ratio between the maximum
energy a perturbation that evolves according to the linearised equations of motion can have at a time
T , given an initial energy E0.

G(T,Re) = max
u(0)

E(u(T ))
E(u(0))

. (3.1)

The perturbation u(0) causing the largest amount of growth is often referred to as the optimal
disturbance. By optimising over T , one can find the maximum possible growth at a given Reynolds
number, Gmax(Re). The values of interest are then this maximum growth and its associated time, Tmax.

In the case of the single phase pipe flow, the transient growth is primarily driven by streamwise-
independent rolls (m = 1) which generate streaks (Bergström, 1992). The time at which the peak in
energy is reached increases linearly with the Reynolds number of the flow while the optimal linear
transient growth scales with Re2 for all modes (Bergström, 1993). The transient growth problem can
be solved using either a matrix-based or a variational method (Kerswell, 2011). The matrix-based
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method uses the same formulation as the linear stability analysis. The linear Navier-Stokes equations
can be written as an eigenvalue equation system, equivalent to the one used for the linear stability
analysis in Section 2.4:

iλAφ = Bφ or iλφ = Lφ , (3.2)

with λ being the eigenvalue vector and φ , the eigenfunctions of the problem, here L is a linear operator.
The optimal growth can be computed from φ using a Singular Value Decomposition method. The
matrix-based method has the advantage of being solved without a time-based computation.

However, the number of modes M needed to obtain convergence make the method unwieldy.
as M > 400 are often needed to converge. While for linear stability analysis, only the value of the
leading eigenvalue and eigenfunction are needed, linear transient growth require at least the first
ten eigenvalues, therefore the number of modes necessary is significantly higher and the accuracy
lower. This issue is even more salient in our problem as there are seven variables, so the effective size
of the matrix is 7M×7M. In this case, the matrices get too large to be handled with the LAPACK
libraries. Therefore, in order to find the optimal growth, a variational method approach which does
not require the use of matrices has been used. The problem described by Equations (2.15)-(2.18) can
be characterised with the following functional L :

L =

〈
1
2

(
m f u2(T )+mpu2

p(T )
)〉

−λ

[〈
1
2

(
m f u2(0)+mpu2

p(0)
)
−E0

〉]

−
ˆ T

0

〈
ϒ ·
(

∂tu+∇p +U ·∇u −u ·∇U − 1
Re

∇
2u − f N0

SRe
(up −u)

)〉
dt

−
ˆ T

0

〈
ϒp ·

(
∂tup +up ·∇U +U ·∇up − 1

SRe
(u−up)

)〉
dt

−
ˆ T

0
⟨Π · ∇ ·u⟩dt −

ˆ T

0
⟨Γ · (∂tN +N0∇ ·up +up ·∇N0 +U ·∇N)⟩ dt , (3.3)

where λ , ϒ, ϒp, Γ and Π are the Lagrange multipliers enforcing the constraints of the problem: λ

enforces that the energy is fixed, ϒ and ϒp enforce that Equations (2.15) and (2.16) hold true over
t ∈ [0,T ], Π and Γ enforces the incompressibility of the flow and the conservation of the total number
of particles. The brackets represent a normalised volume integral over the pipe, given any function
f : ⟨ f ⟩=

´
f dV/Vp with Vp the pipe volume. This approach has been developed by Andersson et al.

(1999) and Guégan et al. (2006) and used for single phase pipe flows by Pringle and Kerswell (2010).

Finding the initial perturbation that will maximise energy growth is equivalent to maximising
L , done here through finding the root of its derivative δL . By reordering δL , one can obtain the
adjoint system of equations of our problem. Since integral and differentiations are linear operators,
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each term of L can be considered individually when computing δL . A complete version of the
derivation of the adjoint equations is given in Appendix A, but the process is similar for most terms.
Let us take the second part of the advective term of Equation (2.15) as an example:

ˆ T

0
⟨δ (ϒ · U∂zu)⟩ dt =

ˆ T

0
⟨δϒ · (U∂zu)⟩ dt +

ˆ T

0
⟨ϒ · δ (U∂zu)⟩ dt , (3.4)

using integration by part on the last term of Equation (3.4) one can obtain:

ˆ T

0
⟨ϒ · δ (U∂zu)⟩ dt =

ˆ T

0
⟨ϒ · U∂z(δu) ⟩ dt =

ˆ T

0
⟨U ·∂z(ϒδu)⟩ dt −

ˆ T

0
⟨δu · U∂zϒ⟩ dt , (3.5)

´ T
0 ⟨U ·∂z(ϒδu)⟩dt can be shown to be equal to 0 due to the periodicity of our problem in the

z-direction:

ˆ T

0
⟨U ·∂z(ϒδu)⟩ dt =

ˆ T

0
⟨∂z(U ·ϒδu)⟩ dt −

ˆ T

0
⟨(ϒδu) ·∂zU⟩ dt , (3.6)

as we know, ∂zU = 0. Moreover, the brackets represent a volume integral over the pipe so that, using
the L-periodicity in the z-direction, the second term of Equation 3.6 can be written as:

ˆ T

0
⟨∂z(U ·ϒδu)⟩ dt =

ˆ T

0

ˆ
r

ˆ
θ

[U ·ϒδu]
L

0
dr dθ dt = 0 . (3.7)

Consequently, Equation (3.5) becomes:

ˆ T

0
⟨δ (ϒ · U∂zu⟩ ) dt =−

ˆ T

0
⟨δu · (U∂zϒ)⟩ dt +

ˆ T

0
⟨δϒ · (U∂zu)⟩ dt . (3.8)

The equations of motion for fluid and particles are given in Equation (3.3). The adjoint system of
equation is:

∂tϒ =−U ·∇ϒ + ϒ ·∇U −∇Π− 1
Re

∇
2
ϒ +

f N0

SRe
ϒ − 1

SRe
ϒp , (3.9)

∂tϒp =−U ·∇ϒp + ϒp ·∇U−N0 ∇Γ− f N0

SRe
ϒ +

1
SRe

ϒp , (3.10)

∂tΓ =−U ·∇Γ−up ·∇Γ , (3.11)

∇ ·ϒ = 0 . (3.12)
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where ϒ and ϒp are the fluid and particles velocities respectively; Γ being the adjoint particle local
concentration while Π is the adjoint pressure. Another set of conditions are obtained by enforcing
δL = 0 (the details of the derivation are given in Sections A.1 and A.2 of the Appendix):

u(T ) = ϒ(T ) , up(T ) = ϒp(T ) , (3.13)

λu(0)−ϒ(0) = 0 , λup(0)−ϒp(0) = 0 . (3.14)

3.2 Description of the iterative variational method

The model uses an iterative procedure in order to minimise δL , akin to the one from Pringle et al.
(2012). Initially, a first guess of the initial perturbation: u(0)(t = 0) = u0

(0), up
(0)(t = 0) = up0

(0), is
made. One can use random values for the initial perturbation but at the cost of a larger number of
iterations needed, around 50 in our case, to obtain convergence. The iteration process is as follows:

• The flow direct variables, u,up, p and N, are integrated forward until a target time t = T is
reached, using Equations (2.15)-(2.18) to obtain u(0)(T ) and up

(0)(T ), ϒ
(0)(T ) and ϒp

(0)(T )
are then computed using conditions (3.13).

• ϒ
(0) and ϒp

(0) are integrated backward using the adjoint system of Equations (3.9)- (3.12) to
find ϒ

(0)(0) and ϒp
(0)(0).

• The conditions left after the previous steps are:

∂L

∂u0
=−λu0 −ϒ ,

∂L

∂up0
=−λpup0 −ϒp . (3.15)

Both ∂L
∂u0

and ∂L
∂up0

are supposed to be equal to 0. It is a priori not true with this method, as it
does not give an exact solution, there will be the residues ε and εp left. The initial perturbations
for the next iteration are given as:

u(1)(0) = u(0)(0)+ ε(λu(0)−ϒ
(0)(0)) (3.16)

for the fluid velocity, and:

up
(1)(0) = up

(0)(0)+ εp(λpup
(0)(0)−ϒp

(0)(0)) , (3.17)

for the particle velocity. The aim of the process being the iterative decrease of ε . The previous
steps are repeated until convergence is reached, numerically it corresponds to both ε and εp

becoming smaller than an arbitrary value chosen as threshold.
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3.3 Description of the code and numerical method

The code is derived from a standard DNS code, (Willis, 2017), and is the same as the one described in
Section 2.5. This code has been modified to account for the presence of particles with the model from
Klinkenberg et al. (2011).

3.3.1 Time-stepping scheme

The equations for the evolution of the fluid velocity, u and particles velocity, up are of the form:

∂tu = Lu+N , (3.18)

∂tup = Np . (3.19)

Where L is a linear operator (the Laplacian in our case) and N/Np the advective and Stokes terms for
Equations (3.18) and (3.19) respectively, which cannot directly be expressed as a function of u or up.
Temporal discretisation is done through a second-order predictor-corrector scheme.

The predictor equation for the fluid velocity between the timesteps q and q+1 is given below:

uq+1
1 = uq −∆t

(
c∇

2uq+1
1 +(1− c)∇2uq +Nq

)
, (3.20)

where c is the implicitness, the scheme is of second order for c = 0.5. However, the value recom-
mended by Willis (2017) is c = 0.51. Even though for this value of c the scheme is only first order;
the error margin is small enough that the accuracy is almost as good as a second order scheme while
improving the stability of the numerical computation. The corrector step is iterated from the step j to
j+1, yielding:

uq+1
j+1 = uq −∆t

(
c∇

2uq+1
j +(1− c)∇2uq ,+cNq+1

j +(1− c)Nq
)
, (3.21)

the operation is iterated until convergence is achieved, i.e. when uq+1
j+1 −uq+1

j is below the threshold.
In our case he threshold is fixed to 10−5. A similar process is used for the particle velocity. Without
diffusion, the equations are reduced to:

up
q+1
1 = up

q +∆t Np
q , (3.22)

for the predictor operation, and

up
q+1
j+1 = up

q −∆t
(

cNp
q+1
j +(1− c)Np

q
)
, (3.23)
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for the correction operation.

The numerical method uses one equation to describe the motion of both u and up at each radial
point, such that the set of equations can be written as a matrix problem of the form:

fq+1

∆t
= Afq +B . (3.24)

Matrices A and B are of dimension (Nr ×Nr) with Nr, the number of points in the radial direction
and f = (ur,uθ ,uz, upr,upθ ,upz). A is constant and do not need to be calculated at every time step. The
pressure is calculated using the Poisson equation: ∇2 p = ∇uq+1.

The time used from now on corresponds to the numerical time of the code (Willis, 2017); it
is equal to t = r0/Ucl where r0 is the pipe radius and Ucl is the centreline velocity of the steady
Hagen-Poiseuille flow.

3.3.2 Spatial discretisation method

The spatial discretisation is done using a fourth order implicit finite difference scheme in the radial
direction, and with Fourier transforms in the azimuthal and streamwise direction. The variable is
represented as: f (r, t,z) = ∑k,m f̂ (r)akmei(αkz+m0mθ). The code uses a single index in order to simplify
the variables storage. Values for m < 0 are inferred from the conjugate symmetric property and do not
need to be calculated. In the radial direction, the mesh is composed of Nr points distributed unevenly
at the roots of the Nr first Chebyshev polynomials for r ∈ [0,1]. The points are defined by:

rl = cos
(

2l −1
2Nr

π

)
, l = 1, ...,Nr . (3.25)

As a result, the mesh points are clustered both towards the wall and to a lesser extent the centre of the
pipe. Derivatives are calculated using Taylor expansions for a given function f at a radius, ri:

f (r) =
2l

∑
0

(r− ri)
l

l!
f (l)(ri) , (3.26)

using l neighbouring points on each side of ri gives us 2l equations. These Taylor expansions can also
be expressed in a matrix format:

f = Adf ⇒ df = A−1f , (3.27)

with f = [ f (r−l) · f (rl)]
T and df = [ f (ri) f ′(ri) · f (2l)(ri)]

T , A is the weight matrix, the superscript
corresponds to the order of the derivative.
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f is known and A−1 can be computed to find the values of the derivatives. Taylor expansions are
used for integrations as well, integrating Equation (3.26) gives:

ˆ
r

f (r)dr = (r−ri) f (ri)+
(r− ri)

2

2!
f
′
(ri)+

(r− ri)
3

3!
f (2)(ri)+ ... =

2l

∑
0

(r− ri)
l+1

(l +1)!
f (l)(ri) . (3.28)

Similarly, using l neighbouring points around ri one can obtain a solvable matrix system from which
is derived

´
r f (r)dr. In practice, since the mesh is fixed, the values of the weight matrices only need to

be computed once at the beginning of the run. Derivations and integrations are less accurate close to
the wall when there are fewer than l points between ri and the wall. The problem is partially alleviated
with the use of Chebyshev roots for radial points as they are clustered towards the wall.

3.3.3 Modifications of the code for the solid phase

The code used in this chapter has been modified in order to model the solid phase through a fully
Eulerian framework. In a first time is added a set of equations for the particles velocity, up, for
both the standard and adjoint problem (corresponding to Equation (2.16) for the direct problem and
Equation (3.10) for the adjoint problem respectively). Numerically this corresponds to a modification
of the matrices A and B mentioned in Equation (3.24).

Initial and boundary conditions for the particle velocity need to be added to the code as well. The
initial fluid velocity is obtained from a previous saved state. The code has been modified to allow for
the particle velocity to either be taken for a previous saved state or be randomised, although the first
option will reach convergence after a lower amount of iteration.

In the single phase LDNS, the convergence of the problem by ensuring that ∂L
∂u0

tends towards
0. An additional condition is added to the problem in the case of the particulate flow: ∂L

∂up0
= 0. The

iterative process of the code (mentioned in Section 3.2) had to be modified to compute and ensure the
decay of both ∂L

∂u0
and ∂L

∂up0
.
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Figure 3.1: S = 10−3, f = 0.1 Left: Transient growth as a function of the number in the nth optim-
isation process with Re = 1000. Single phase flow (blue), fixed T (red), varying T (blue). Right:
Transient growth as a function of ∆t, Re = 1000 (red), Re = 2000 (green).

3.4 Convergence of the LDNS code

Figure 3.1 shows the difference between the values for maximum transient growth obtained for a given
number of iterations, and the fully converged value after 500 iterations. The transient growth is shown
to converge as the process is iterated; the jumps are due to the periodic recalibrating of the optimal
time of growth. After approximately a hundred iterations the growth has converged and subsequent
variations are due to noise, probably due to limitations in machine precision. Convergence is faster
for a single phase flow, with 30 iterations necessary before the code reaches machine precision; this
number is more than doubled for particulate flows. However, the error quickly becomes smaller to
the other incertitude source due to the number of points in the radial direction and the timestep. In
this case, the initial perturbation was random, convergence can also be accelerated by choosing a
perturbation closer to the optimal perturbation expected. The maximum growth converges as the
timestep decreases as illustrated in Figure 3.1; the rate of convergence is a power law. The timestep
chosen in this chapter is, unless otherwise specified, dt = 10−3 to obtain a good compromise between
accuracy and computational cost.

3.5 Monotonic stability

As mentioned in section 1.8, a flow is defined as monotonically stable if the amplitude of all perturba-
tions decreases at all time. This is a much more stringent condition than the global stability studied in
Chapter 2.

Knowing the value of the optimal growth as T → 0 is sufficient to determine whether the flow
is monotonically stable. In order to study monotonic stability numerically, we fix a small value
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Figure 3.2: Critical Reynolds number for the monotonic stability ReE (red), f = 0.1. Left: As a
function of S, uniform particle distribution. Right: For a Gaussian particle distribution, as a function
of its position rd , S = 1.2−2, σ = 0.1. The black line represents the single phase pipe flow ReE f , the
blue, ReE f normalised by 1+ f = 0.1, ReE f 2 . The green line represents the value of ReE for a uniform
particle distribution with S = 1.2×10−2.

of T = 10−2 and look for the critical Reynolds monotonic stability, ReE , keeping the solid phase
parameters f and S (as well as rd and σ for nonhomogeneous particle distributions) with a bisection
method. Figure 3.2 shows the value of the critical Reynolds for monotonic stability in the case of
uniform (left side) and Gaussian particle distribution (right side). As mentioned in Section 2.7.6, the
addition of particles modifies the average density of the flow, it is then sensible to normalise the value
of the single phase flow critical Reynolds by 1+ f . The value of ReE for a particulate flow with a
uniform particle distribution is higher than ReE f when S > 10−3. ReE is also always higher than ReE f 2

and ReE(S → 0)→ ReE f 2 . ReE shows a sharp increase with S, followed by a slower decrease after a
peak around S = 1.2×10−2. The amplitude of the effect, of the order of 10%, is significant. In the
case of the Gaussian distribution, ReE is below the value found for the uniform particle distribution
(with the same value of S) except when rd < 0.40. The lowest value is reached when rd = 0.65,
coincidently it corresponds to the Segré-Silberberg radius (Segre and Silberberg, 1962), and is very
close to the radius for which the linear instability was the strongest (Section 2.8.3). This is another
point in favour of the argument that particle effect on the flow is strongest around this radius. The solid
phase has, for an homogeneous particle distribution, a tendency to increase the monotonic Reynolds
number of the flow. On the other hand, arranging particles in a Gaussian distribution tends to decrease
it, especially when particles are concentrated at a radius close to the Segré-Silberberg radius. Overall,
the effect of particles on the monotonic stability is fairly limited, even with for Gaussian particle
distributions that have been shown to lead to linear instability.
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Figure 3.3: Maximal growth as a function of the time of optimisation, T with Re = 1500. Left: Single
phase flow. Right: Uniform particle distribution S = 10−3, f = 0.1. Wavenumbers (α,m) = (1,1) in
red, (α,m) = (0,1) in green.

3.6 Transient growth for uniform particle distributions

First, we consider the case of uniform particle distribution where, as seen in Chapter 2, the particulate
flow is linearly stable for all values of Re, S and f .

3.6.1 Envelope of maximum transient growth

The value of the maximum transient growth depends on the chosen time, while we are mostly
interested in Tmax; it is interesting to see how G depends on T . Figure 3.3 shows an example of the
maximum energy growth as a function of the chosen time T for a single phase flow, and a particulate
flow with homogeneous distribution. The two modes that have the largest growth, (α,m) = (0,1) and
(α,m) = (1,1), are plotted independently. The curves for single phase and particulate flow are of
similar shape, where there are two competing mechanisms for growth.

• For small times, below T = 20 in the single phase flow case, and T = 22.5 for the particulate
flow, the mode producing the most growth is (α,m) = (1,1). The growth produced by this mode
quickly decreases as the time increases.

• For larger values of T , the mode producing the most growth is (α,m) = (0,1).

(α,m) = (0,1) is the mode that yields the largest transient growth when optimising for T , with a
value approximately three times larger than the largest growth when (α,m) = (1,1), for both single
phase flows and particulate flows with homogeneous particle distributions. T will be optimised when
studying the transient growth in the following sections.
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3.6.2 Impact of the Reynolds and dimensionless relaxation time on the transient
growth

In this section the effect of the Reynolds number Re and the dimensionless relaxation time S on the
maximum transient growth is studied, f is kept constant at f = 0.1. In order to illustrate the effect of
particles on the flow, we define the ratio between the growth for the particulate flow with a given set
of parameters and the single phase flow with the same Reynolds number: G′ =

Gp(Re,S, f )
G f (Re) , where both

Gp and G f are maximised over T . A similar ratio is chosen between the optimal time for particulate
and single phase flow, T ′ =

Tp(Re,S, f )
Tf (Re) . Figure 3.4 shows the growth ratio as well as the ratio of optimal

times as a function of S for different values of the Reynolds number. One can see that the addition
of particles increases the transient growth for all values of S, the growth is also delayed since the
ratio between optimal times is always larger than 1. The maximum growth as a function of S peaks at
intermediate values of S, similar to the linear eigenvalue. From now on the growth peak is defined as
G′

peak, and the dimensionless relaxation time associated SG.

The limit S → 0 corresponds to small particles with a small relaxation time. The particles behave
like passive tracers, they closely follow the fluid and do not affect the behaviour of the flow. However,
as particles which much heavier than the fluid are added to the flow, its average density is increased by
a factor (1+ f ). Consequently, the effective Reynolds number of the flow becomes Re′ = Re(1+ f ).
This implies that if the growth rate of a particulate flow obtained at a Reynolds number Re is equal to
the growth rate of the single phase flow at a Reynolds number Re′ = (1+ f )Re, both exhibits identical
properties, the difference in growth rate only being due to a difference in average density. This is what
occurs when S → 0, as illustrated in Table 2.6 which shows examples of growth rates for particulate
flows and single phases flow with Reynolds numbers Re and (1+ f )Re respectively, for S = 10−6.
The normalised difference is consistently below 5×10−4. In this case, the addition of particles makes
the flow less stable, but only through the modification of the average density of the fluid. Klinkenberg
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et al. (2011) found a similar result in the case of the plane Poiseuille flow. It has also been found that
the normalised leading eigenvalue stays almost constant for S in the range 10−7 to 10−4.

When S → 0, G′ ≈ 1.2. The difference between single phase and particulate flows is due, in this
case, to the modification of the average density of the flow caused by the particles. Let us remind that
the limit S → 0 corresponds to small particles with a small relaxation time. The particles behave like
passive tracers and do not directly affect the behaviour of the flow. However, the average density of
the particulate flow is (1+ f ) time the density of the single phase flow. Then, the effective Reynolds
number of the particulate flow is Re′ = 1.1Re. Moreover, in the single phase pipe flow the growth G f

is proportional to Re2, therefore:

Gp(Re,S → 0) = G f (Re′) = G f ((1+ f )Re) = (1+ f )2 G f (Re) . (3.29)

In the case f = 0.1; it implies a a value of the growth ratio G′ = 1.12 = 1.21, as observed in Figure 3.4.
As S increases the ratio G′ seems to decreases towards 1, although convergence is not yet achieved for
S = 10−1; the highest value considered. In the limit of S → ∞, the particles are so heavy that particles
and flow are effectively decoupled so the particles have no effect on the flow. A similar effect was
observed for the linear stability analysis in Section 2.7.6. The Reynolds number has little incidence
on G′, as the curves have a very similar shape when Re is varied. The curves of Figure 3.4 have, for
all Re considered, a peak for approximately the same relaxation time, S ≃ 2.5×10−2.

Moreover, the value of G′
peak shows little change as Re varies with 1.290 6 G′

peak 6 1.297. G′
peak

is almost constant over the Reynolds number and the transient growth for single phase flow G f (Re)
scales with Re2; it follows that the transient growth for particulate flows optimised over S Gp(SG) also
scales with Re2.

The right graph of Figure 3.4 shows the ratio of T ′ as a function of S. The growth is delayed
for particulate flows compared to single phase for any value of S and Re considered. As S → 0, the
time for which the growth is maximised increases by 10% compared to the single phase flow. This
corresponds to the time for the modified Reynolds number Re′ = (1+ f )Re since, as discussed in the
previous section, the time for maximum growth increases linearly with Re. Similarly, a peak for the
time ratio T ′

peak occurs at a dimensionless relaxation time ST . The time ratio decreases as S continues
to increase in a similar fashion as the ratio of growth. ST is significantly higher than SG, in addition
there also are more variations between cases. The peak value of S is centred around ST = 5×10−2.
T ′

peak vary between 1.205 and 1.22 depending on Re. The ratio becomes slightly lower as the Reynolds
number increases but the effect size is small with only a 1.5% difference for an increase of the Re by
an order of magnitude.
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Figure 3.5: Maximal growth as a function of the time of optimisation T for a Gaussian particle
distribution with Re = 1500, S = 10−3, f = 0.1, rd = 0.65 and σ = 0.104. The red line corresponds
to the wavenumbers (α,m) = (1,1), the green line to (α,m) = (0,1).

3.7 Transient growth with nonhomogeneous particle distribution

We have seen in Chapter 2 that allowing for a nonhomogeneous distribution of the particles dramat-
ically increases the effect of the solid phase on the flow linear stability. This is also the case for
the transient growth. The mechanisms producing transient growth for single phase and particulate
flows are the same, even when considering nonhomogeneous distribution, however, the amplitude of
transient growth can be much stronger as particles are non-uniformly distributed. Figure 3.5 shows the
envelope for a Gaussian particles distribution with rd = 0.65 and σ = 0.104. For these parameters the
flow is still linearly stable. The behaviour is the same for the pure fluid and homogeneous distribution
cases as illustrated in Figure 3.3, but the transition to streamwise independent modes is slightly
delayed, occurring at T = 25. The overall shape of the growth is the same for a Gaussian distribution
as one for the homogeneous particle distribution as illustrated in Figure 3.6. The maximum growth
increases as particles get more concentrated, corresponding to a decrease of σ . However, the effect
is significantly more pronounced even for smaller values of σ , for σ = 0.10 the smallest value
considered, and rd = 0.7, G′

peak = 2.30. The growth ratio as S → 0 is no longer equivalent to the ratio
for Re′. However G′ still tends towards 1 for very large values of S.
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Figure 3.6: Ratio of growth between particulate and single phase flow as a function of S for f = 0.1
and Re = 1000 in the case of a Gaussian particle distribution centred around rd = 0.7. Left: Maximal
transient growth. Right: Ratio of the time of maximum growth. Uniform distribution (red), σ = 0.15
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This is similar to the linear stability analysis when the effect of particles is higher as they are more
concentrated. The position of the peak shifts to a larger S in the nonhomogeneous distribution case,
around SG ≃ 3.5×10−2.

The time at which the optimal growth occurs is delayed for Gaussian particle distributions as well.
The effect is stronger for Gaussian distributions and the ratio of times further increases as the standard
deviation σ decreases. The time ratio as S → 0 is no longer equivalent to the time ratio for Re′, as
opposed to the homogeneous particle distribution. The maximum growth occurs at larger values of S
compared to homogeneous particle distribution, with 8.25×10−2 6 ST 6 9×10−2. Changing the
standard deviation σ of the particles distribution affected the growth ratio but has little effect on the
value of SG and ST . The behaviour as a function of S in general is not affected.

The position of the preferential radius of particles has a strong impact on both G′ and T ′. Figure
3.7 shows the ratio of growth for several values of σ with rd = 0.3, with all other parameters being kept
equal to those of Figure 3.6. The effect of σ is similar to the one observed for rd = 0.3. On the other
hand, the values of G′

peak, T ′
peak as well as SG and ST are quite different. For example, when σ = 0.10,

the peak of the ratio of the transient growth is G′
peak(rd = 0.3) = 1.65 (compared to G′

peak(rd = 0.7) =
2.3) and the time ratio is T ′

peak(rd = 0.3) = 1.35 (compared to T ′
peak(rd = 0.7) = 1.8). The position

of the particle distribution is therefore a critical parameter when considering the flow transient growth.
Although the effect is weaker, both G′

peak and T ′
peak are significantly stronger for the Gaussian particle

distribution with rd = 0.3 than for a homogeneous particle distribution. The dimensionless relaxation
time at which these peaks occur is smaller for Gaussian distribution when rd = 0.30 in comparison to
homogeneous distribution, this is the opposite effect to what occurred for rd = 0.70. For rd = 0.3,
SG = 2×10−2 (while SG = 2.5×10−2 with an homogeneous particle distribution) and ST ≃ 4×10−2

(compared to ST = 5×10−2 for an homogeneous particle distribution).

More values of rd are considered in Figure 3.8, which gives the ratios of transient growth as a
function of S for several particle distribution radius rd , with Re = 1000 and σ = 0.1. The value of
the growth peak goes from G′

peak = 1.95 for rd = 0.3, to G′
peak = 3.50 for rd = 0.6. The time of

maximum growth are likewise dependent on rd . The effect of particles on the flow is the highest for
rd = 0.5−0.6 both for the ratio of maximum growth and the ratio of time as shown in Figure 3.8.
Again, the effect of the particle is maximal relatively close to the Segré-Silberberg radius. Both SG

and ST are, for rd = 0.3, smaller than their counterpart in the case of a uniform particle distribution,
but larger for all the others values of rd studied. There does not seem to be a consistent effect between
rd and either G′

peak or T ′
peak.
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Figure 3.9: Maximal growth as a function of the time of optimisation T , for a Gaussian particle
distribution with Re = 1500, rd = 0.65, S = 10−3, f = 0.1 and σ = 0.094. The red line illustrates the
mode (α,m) = (1,1), the green line (α,m) = (0,1).
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Figure 3.10: Energy growth as a function of time for several Reynolds numbers, Re = 750 (red),
Re = 915 (green), Re = 1000 (blue), Re = 1500 (purple). S = 10−3, f = 0.1, rd = 0.70, σ = 0.09.
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3.8 Linear instability

Since the particulate pipe flow can become linearly unstable, the LDNS simulation should show a
different behaviour, with no maximum growth for a finite time. Figure 3.9 shows the envelope for
a linearly unstable case, the behaviour for the mode (α,m) = (0,1) is similar to what is observed in
Figure 3.5, where the flow is linearly stable. The mode (α,m) = (1,1), however, continues to increase
indefinitely with the target time after its peak until it exceeds the value from the other mode at T = 150.
This observation is consistent with the fact that in the single phase flow case, the optimal transient
growth is produced by a streamwise-independent mode with m = 1 (Section 2.8). The evolution of
a perturbation as a function of the time t (distinct from the target time T ) is shown in Figure 3.10.
The flow is stable for Re = 750 and unstable for the other values. The energy growth in unstable case
exhibits a first peak corresponding to the single phase transient growth followed by a momentary
decrease and a exponential growth for larger times. The time for the transient growth peak is smaller
in the unstable cases.

Overall, the effect of particle on the transient growth in the case of Gaussian particle distributions
is quite pronounced. The growth is more than doubled at the peak in the region rd = 0.5−0.8, where
particle tend to cluster (as discussed in Sections 1.9.2 and 2.9) for a distribution of σ = 0.1, which is
not highly clustered. This stronger growth could lead to new mechanisms for turbulence formation.
Another question we will seek to answer in the next section is the role of particle on the shape of the
optimal perturbation, as it could give insight on different ways to trigger turbulence in particulate
flows.

3.9 Velocity modes topology

In this chapter, the impact of the particles on the transient growth has been studied. We now consider
how the addition of particle affects the profile of the optimal initial perturbation. In the figures of
this section, the heat map represents the streamwise velocity while the arrows are proportional to the
spanwise velocity, normalised by its maximum.

3.9.1 Single phase flow

The velocity contours of the perturbations are very different depending on whether the dominant
mode is (α,m) = (1,1) or (α,m) = (0,1). Figures 3.11a and 3.12a are velocity contours of the pipe
section. Figure 3.11a are the contours of the initial perturbation and Figure 3.12a shows the peak
velocity contours, as the growth is optimised for T = 14. Figure 3.11a shows two symmetric rolls in
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(a) Target time T = 14. Mode (α,m) = (1,1).
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(b) Target time T = 90. Mode (α,m) = (0,1).
Figure 3.11: Velocity contours u0 of the optimal perturbation for single phase flows, Re = 1500.
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(a) Target time T = 14. Mode (α,m) = (1,1).
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(b) Target time T = 90. Mode (α,m) = (0,1).
Figure 3.12: Peak velocity contours uT of single phase flow, Re = 1500.

the spanwise direction. The streamwise velocity has a peak of the form of an antisymmetric annulus
between r = 0.5 and r = 0.7, with a change of direction between the peak and the rest of the half
plane. There is also a reflectional symmetry with regards to the centre due to the fact that m = 1.
Streamwise and spanwise velocities are of the same order of magnitude in both cases.

For a perturbation with a larger target time T , the streamwise independent mode is dominating
as illustrated in Figure 3.11b. The velocity contours at T = Tpeak for T = 90 (Figure 3.12b) and the
optimal perturbation for the same time (Figure 3.11b) have an identical shape. However, for the
optimal perturbation, the spanwise velocity is much stronger than the streamwise velocity, while in
the case of the peak velocity, the streamwise velocity is an order of magnitude larger than the other
components. In the spanwise direction, there are two rolls that are distinctive of the usual single phase
transient growth (Bergström, 1993). The spanwise velocity is more uniformly distributed than for
T = 14. The streamwise velocity is also more than two orders of magnitude smaller than the spanwise
velocity for T = 90, when the mode (α,m) = (1,1) is dominant, whereas they are of the same order of
magnitude when T = 14.
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3.9.2 Particulate flows

For small values of the dimensionless relaxation time and uniform particle distribution, both the
initial perturbation of the fluid and particles are almost identical, as illustrated in Figures 3.13a-3.13f.
The topology of the streamwise velocity distribution is shaped as two antisymmetric spirals with
the spanwise velocity concentrated over these same rolls. For the lower target time T = 14 when
the mode (α = 1,m = 1) is dominant; both the optimal initial velocity contours and peak velocity
contours, as seen in Figures 3.13a-3.13f, are quantitatively equal to the one observed for single phase
flow (see Figures 3.11a and 3.12a). In the second case where T = 90; the mode (α = 0,m = 1) is
dominant. The velocity contours between single phase (illustrated in Figure 3.11b) and particulate
flows (Figures 3.13c and 3.13d) are identical both in shape and in values. The contours have the same
characteristics in the case of Gaussian distributed particles, with the exception of the velocity of the
initial optimal perturbations concentrated where the particles are distributed (see Figures 3.14a-3.14d).
The fluid and particles peak velocities are very similar to the peak velocity of the single phase flow
due to the fact that for a small dimensionless relaxation time, fluid and particles are strongly coupled.
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(c) Target time T = 90. Optimal perturbation u0.

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0
umax = 0.020055 

−0.01515

−0.01178

−0.00842

−0.00505

−0.00168

0.00168

0.00505

0.00842

0.01178

0.01515

(d) Target time T = 90. Optimal perturbation up0.
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(e) Target time T = 14. Peak velocity upT.
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(f) Target time T = 90. Peak velocity upT.
Figure 3.13: Homogeneous particle distribution, Re = 1500, f = 0.1, S = 10−3, the dominant mode
is (α,m) = (1,1) in the case T = 14 and (α,m) = (0,1) for T = 90.



104 Linear transient growth of the particulate pipe flow

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0
umax = 0.019228 

−0.01513

−0.01177

−0.00841

−0.00504

−0.00168

0.00168

0.00504

0.00841

0.01177

0.01513

(a) Target time T = 14. Optimal perturbation u0.
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(b) Target time T = 14. Optimal perturbation up0.
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(c) Target time T = 90. Optimal perturbation u0.
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(d) Target time T = 90. Optimal perturbation up0.
Figure 3.14: Optimal perturbation contours of a particulate flow with a Gaussian particle distribution,
Re = 1500, f = 0.1, S = 10−3, rd = 0.65, σ = 0.104.
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(a) Target time T = 14. Peak velocity upT.
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Figure 3.15: Peak velocity contours of a particulate flow with a Gaussian particle distribution,
Re = 1500, f = 0.1, S = 10−3, rd = 0.65, σ = 0.104.
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3.10 Conclusion

The addition of particles does impact the maximum transient growth as well as the maximum time
of growth. In a similar fashion to the effect on the growth rate in the linear stability analysis seen in
Chapter 2, homogeneous particles distributions only have a limited effect, with a below 30% increase
in all cases even for a fairly large value of f = 0.1. The effect of S on the transient growth is slightly
different than that of the growth rate in the linear stability analysis; the transient growth is increased
regardless of the values of S, while some values of S have a stabilising effect on the flow in the linear
stability analysis. The behaviour for transient growth and linear stability analysis, however, is similar
for S → 0, where the growth is increased proportionally to 1+ f , and S → ∞ where the addition of
particles has no effect on the flow. There is a value of the dimensionless relaxation time for which
the growth is maximised. Not only is this relaxation time independent of the Reynolds number, the
ratio of growths optimised over S, G′

peak, is constant as Re varies. This implies that the particulate
flow scales as Re2 as it does for the single phase flow. In the case of Gaussian particle distributions,
the addition of particles can lead to an increase of the transient growth by more than 200% for some
values of S, rd and σ . The transient growth increases monotonically as σ decreases. As for rd , the
effect of the solid phase on the transient growth is weaker when the particles are close to the wall
or at the pipe centre, and strongest at the intermediate region (rd = 0.6−0.7). This region seems to
play a key role both in the laminar state and in the flow stability. Indeed, neutrally buoyant particles
tend to cluster in this region in the laminar state (Matas et al., 2004b; Segre and Silberberg, 1962) and
particulate pipe flows have been found linearly unstable when particles of intermediate size are added
in that region (Rouquier et al., 2018). Several elements, such as the most for which the growth is the
same for single phase and particulate flows being the same, and velocity contours staying quite similar
as particles are added, seems to indicate that the addition of particles does not change the mechanisms
by which the transient growth occurs. The work done in this Chapter does not answer the questions of
how the particles increase the flow transient growth and whether the actual pathway to turbulence
is indeed sensitive to particles being present in that region. Further work including fully nonlinear
effects is necessary in order to better understand the the role of the solid phase in the transition to
turbulence. Although it is likely that the addition of particles leads to new mechanisms for transition
to turbulence (Boronin, 2012; Matas et al., 2003), the fully Eulerian model did not highlight any new
mechanism.



Chapter 4

Point particle model

The work presented in Chapters 2 and 3 used an Eulerian framework to model the solid phase. As
mentioned in Section 1.4, while using an Eulerian mesh for this purpose has advantages, it also comes
with limitations. Particles are not considered individually, limiting the study of particle behaviour
and particle-particle dynamics in particular. The fully Eulerian model also relies on the continuous
assumption for the solid phase, which breaks down if the distance between particles is too large, for
example in cases where a small number of large particles are considered. In this chapter a second
theoretical model is implemented, using particle Lagrangian tracking to model the solid phase while
the fluid phase is modelled with an Eulerian framework. The main objectives of this Chapter are
to describe the code used and give some examples of how its applications. As the code is still
under construction, there are limitations as to what is doable, but interesting results where obtained
nonetheless. There are several avenues for future work with minor adjustments to the code.

4.1 Description of the model and governing equations

4.1.1 Equations of motion of the fluid

Our model needs two types of equations of motion, one in the Eulerian frame of reference for the fluid
and the second in the Lagrangian frame of reference for the particles. The fluid velocity is described
by the standard Navier-Stokes equations; conservation of mass and conservation of momentum
respectively yield:

∇ ·u = 0 , (4.1)

ρ f

(
∂u
∂ t

+(u ·∇)u
)
=−∇p+µ∇

2u+F0 . (4.2)

where ρ f is the fluid density, u is the fluid velocity, p is the pressure, µ is the dynamic viscosity
and F0, the external forces. In our case F0 represents the effect of the particles on the fluid. The
problem is non-dimensionalised using the steady flow centreline velocity U0 and the pipe radius r0.
The dimensionless form of Equations (4.1) and (4.2) is:

∇ ·u = 0 , (4.3)

∂tu =−u ·∇u−∇p+
1

Re
∇

2u+F , (4.4)
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with Re = U0r0
ν

as the flow Reynolds number.

4.1.2 Particle-fluid interaction

The motion of the particles is described using a point particle approximation (see Section 1.5.1).
Each particle is modelled as a single point, the particles still have a theoretical mass and radius. The
equation of motion for the particles is adapted from the equation of motion for a rigid sphere given by
Maxey and Riley (1983). The velocity up of a particle is described by the following equation:

mp
dup

dt
= m f

Du
dt

+(mp −m f )g−
m f

2
d
dt

(
up −u− a2

10
∇

2u
)
−6πaµ

(
up −u− a2

6
∇

2u
)

,

(4.5)

with u being the fluid velocity at the particle position, a the particle radius, µ the fluid viscosity, mp

and m f =
4
3 π

a3

ρ f
are the particle mass and the fluid mass for an equivalent volume.

Equation (4.5) can be non-dimensionalised using the steady flow velocity U0 and the pipe radius
r0. The dimensionless numbers thus obtained are: a′ = a

r0
, the particle to pipe radius ratio; ρt =

ρ f
ρp

, the

fluid to particle density ratio; Re = U0r0
ν

, the Reynolds number; S = 2
9

a2

ρt
, the dimensionless relaxation

time and Ri = gr0
U2

0
g, the Richardson number with g the standard gravity and g its direction. The

dimensionless form of Equation (4.5) is given as:

dup

dt
= ρt

Du
dt

+(1−ρt)Ri− ρt

2
d
dt

(
up −u− a2

10
∇

2u
)
− 1

SRe

(
up −u− a2

6
∇

2u
)

. (4.6)

The details of the non-dimensionalisation of the problem are given in Appendix B.1. There are several
points of note, Equation (4.6) illustrates that the force applied by the fluid on the particles is partially
driven by the velocity difference between a particle and the surrounding fluid. Moreover, all the
terms of the equations are dependent on the ratio between fluid and particle densities ρt , as S is
proportional to ρt as well. The behaviour of the particles is therefore mainly driven by velocity and
density difference between fluid and particles, as well as particle size.

4.1.3 Detection of particle-particle collisions

As the point particle model is only valid for small solid fraction, one could consider neglecting the
collisions between particles, this is the choice done in Squires and Eaton (1991). However, as particles
have a tendency to cluster in both laminar (Segre and Silberberg, 1962) and turbulent flows (Eaton
and Fessler, 1994). This clustering can lead particle local concentrations an order of magnitude
larger than the flow average, as observed in Matas et al. (2004b) for laminar flows and Sardina et al.
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(2012) in the case of fully turbulent flows. In this case the expected rate of collisions should be much
higher than for homogeneously distributed particles and is less likely to have a negligible effect on the
flow. Our code still allows for the possibility of neglecting particle-particle interactions if the particle
volume concentration is low enough. The distance d between two particles of radii ai and a j whose
coordinates are (ri,θi,zi) and (r j,θ j,z j) is given (in cylindrical coordinates) by:

d =
(
r2

i + r2
j −2ri r j cos(θ j −θi)+(z j − zi)

2 )1/2 − (ai +a j) . (4.7)

Two methods have been implemented to detect collisions. A first, simpler method, is to compare the
position of each particle to the others at each time step to check for collision. However, it can miss
some of the collisions, especially for small and fast particles. The accuracy of the method is increased
by checking the distance for several sub-time steps, at the cost of an higher number of necessary
computations.

The second method uses a trajectory equation (Yamamoto et al., 2001) in order to obtain a function
describing an approximation of the evolution of a particle position between t and t +dt, assuming
that the particle velocity is constant during the interval, such that

xi(τ) = xi(t)+ τ upi , (4.8)

where xi(τ) is the position of the particle i at a time τ , and upi its velocity at a time t. One can then
express the evolution of the distance between two particles i and j, between t and t +dt:

d(τ) =
(

r2
i +2ri upriτ +u2

pri τ
2 + r2

j +2r j upr jτ +u2
pr j τ

2

−2(ri +upri τ)(r j +upr j τ)cos(θi +upθ i τ −θ j −upθ i τ)

+(z j +upz j τ − zi −upzi τ)2
)1/2

− (ai +a j) . (4.9)

A collision between two particles occurs at any τ that is a root of the function d(τ). There is, however,
no simple way to solve this equation due to the presence of the cosine term. This issue is resolved in
our code by converting the problem to Cartesian coordinates where the equation for d(τ) is a second
order polynomial whose roots can easily be found. The better suited detection method depends on
the particles velocities, their radii and the code timestep. If up ∆t ≪ a, checking particles position at
t +dt is sufficient, otherwise using a trajectory equation is necessary to ensure no collision is missed.
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4.1.4 Processing of particle-particle collisions

One can bypass the issue of particle-particle collisions by adding a fictitious repulsive force, as
mentioned in Section 1.5.2. While, for the repulsive force used, for example, in (Glowinski et al.,
1999) model, the addition of this force only require a simple modification of the model that does not
require additional steps to process collisions, it is a non physical way of solving the problem. In this
work, rather than utilising a fictitious force, a hard-particle model of collisions is used to process
particle-particle collisions and compute the resulting velocity changes, as described in Section 1.6.
The hard-particle model assumes the conservation of momentum through a inelastic collision between
two particles i and j. The collision is described using the conservation of linear momentum for each
particle,

mi(u+
i −u−

i ) = J ⇒ u+
i = u−

i +
J
mi

, (4.10)

m j(u+
j −u−

j ) =−J ⇒ u+
j = u−

j − J
m j

, (4.11)

where J is the impulse of momentum acting on particle i due to collision with particle j; u is the
particles velocity, with the superscripts +/− indicating if the value of the variable is after or before
the collision respectively. J can be written as:

J = m′(1+ εN)
(
(u−

i −u−
j ) · n̂

)
n̂+

2
7

m′(1+ εS)
(
(u−

i −u−
j ) · ŝ

)
ŝ , (4.12)

with m′ representing the effective mass so that: 1
m′ =

1
mi
+ 1

m j
. εN is the coefficient of restitution,

bounded between 0 for a completely inelastic collision, and 1 for a perfectly elastic collision. εS is the
tangential coefficient of restitution, where εS = [−1, 1]; εS =−1 corresponds to a frictionless collision,
εS = 1 to a perfectly elastic one, the case εS = 0 corresponds the no-slip case. The hard-particle
collision model is also used for wall-particle collisions. In this specific case u−

j = 0, m′ = mi and
n̂ = r̂. A more elaborate collision model, the soft-particle approximation (described in Section 1.6)
could be implemented into the code with minor modifications. Another point to keep in mind is
that collisions in the hard-particle model are considered to be instantaneous, consequently it can
only handle binary particles collisions. This is a limiting factor in the limit of dense suspensions.
However, as point particle models do not model the flow around the particles nor take into account
more complex particles-particles interactions such as agglomeration and sedimentation, the‘ collision
model used is unlikely to be the bottleneck with regards to the particle volume fraction.
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4.2 Details on the numerical method

The code used in our work is a modified version of Willis (2017), a Lagrangian tracking procedure has
been implemented for the solid phase. The original code has already been described in Section 3.3.
Therefore, in this section, the primary focus is on the modifications made to account for the addition
of solid phase to the flow.

4.2.1 Initial particles conditions

The initial position of the particles should have little effect for a sufficiently long pipe, or for large
timescales as the particles tend to converge to consistent distribution (Matas et al., 2004b; Tritton,
1988). The effect can still be significant for short timescales. Six possible initial configurations are
considered for the initial particle distribution in each direction:

• Fully randomised particle distribution.

• Uniform particle distribution in the entire pipe length.

• Uniform particle distribution between two bounds.

• Gaussian particle distribution centred at rd of a standard deviation σ .

• Initial particle state retrieved from a previous run.

Since the set of possible particle positions is continuous in a Lagrangian framework, the distri-
butions considered cannot be exactly evenly distributed. Therefore, in all cases except for the fixed
value case, the particles initial distribution is defined in probabilistic terms using the inbuilt Fortran
random number generator. For example, considering an “uniform” distribution, each particle has a
uniform probability of being anywhere in the pipe, it does not necessarily lead to the distribution of the
particles to homogeneous. Consequently, the distribution will have deviations compared to the ideal
case, resulting in differences in initial distribution from one run to another even if all parameters are
kept identical, the issue is especially relevant for low numbers of particles, this effect is illustrated in
Section 4.2.7. This is not an issue, as the ideal case does not accurately represent realistic distributions,
indeed a particle distribution with some variation is closer to real cases. Still, having particles initial
distributions conserved between runs allows for direct comparisons, studying a particular dynamic or
the effect of a parameter. This is why the possibility of using the particle distribution from a previous
run has been implemented in the code. This allows us to consider a variety of cases; for example,
particles distributed at a fixed streamwise position z and evenly distributed in the section, simulating
how particles are often injected in experiments (Matas et al., 2004b). Likewise, a homogeneous
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particle distribution in the streamwise and azimuthal distribution, with a nonhomogeneous distribution
in the radial direction is closer to what is found in the developed particulate pipe flow (Matas et al.,
2004b; Saffman, 1965). Although the particles are treated as points in our model, they still possess a
theoretical radius, so that once the initial positions are determined for all particles, the program needs
to check for overlap between particles, in the case where there is an overlap between two particles,
one of them is given a new random position. As for the initial velocity of the particles, it is set to be
either equal to the fluid velocity, or randomised with only a fixed total kinetic energy per particle. It is
also possible to use the particles initial velocities from a previous run.

4.2.2 Neighbouring cell: Coarse Contact Detection

The collision detection algorithm need to check for potential collisions for all particles. While can
detect collisions using a brute force method that checks for every possible collision between any two
particles, however, the number of operations per timestep required scales with N2

p. Therefore, the
brute force method is not practical when considering a large number of particles. The efficiency can
be improved by checking for possible collisions of a given particle only with particles that are in
their neighbourhood (Vance et al., 2006; Yamamoto et al., 2001; Zhao et al., 2006). The domain is
separated into cells, following which the collision detection can be made independently for each cell.
The numerical program has a mesh used for the Eulerian formulation of the fluid. We can either use it
directly or multiples of it depending on the cell size wanted, as the detection algorithm is optimised
when the cell size is around twice the particles radius (Mio et al., 2005). If correctly optimised, a
neighbouring cell method scales as O(n) (Muth et al., 2007). This scaling has not yet be verified in
the present code, this is one of the expected next step in future works.

4.2.3 Eulerian to Lagrangian interpolation

Since our model is a point particle model with a Lagrangian framework for the particles and an Eulerian
one for the fluid, the values of the fluid velocity need to be interpolated from the neighbouring nodes
to the particles position and vice-versa, in order to compute fluid-particle interactions. The accuracy
of the interpolation depends on the distance between the mesh point and the interpolated point as well
as the interpolation method used. Two such methods have been implemented: trilinear interpolation
and spline interpolation.

Trilinear interpolation

A trilinear interpolation is a first order method interpolating the value of function f at a point
whose coordinates are (x,y,z), from the closest neighbouring points (x0,y0,z0,x1,y1,z1). In three
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dimensions, the linear interpolation of a function f is:

f(x,y,z) =(1− zd)(1− yd)(1− xd) f(x0,y0,z0)+(1− zd)(1− yd)xd f(x1,y0,z0)+

(1− zd)yd (1− xd) f(x0,y1,z0)+(1− zd)yd xd f(x1,y1,z0)+

zd (1− yd)(1− xd) f(x0,y0,z1)+ zd (1− yd)xd f(x1,y0,z1)+

zd yd (1− xd) f(x0,y1,z1)+ zd yd xd f(x1,y1,z1) , (4.13)

where xd = x−x0
x1−x0

, yd = y−y0
y1−y0

and zd = z−z0
z1−z0

.

Although linear interpolation methods have been used in the literature (Sardina et al., 2012), they
have a rather low accuracy, requiring a very fine grid to keep a satisfying uncertainty margin.

Spline interpolation

A second, more accurate method implemented in our code uses spline polynomials. In our case,
a spline of order 3, with ns points in each direction, are used for the interpolation. For a discrete
function f whose value is known at the points xk with k ∈ [1, 2n], the coefficients ak, bk and ck that
best fit the values of f given are computed. Assuming a given position xa where xi 6 xa 6 xi+1, f can
then be interpolated as:

f(xa) = f(xi)+ai(xa − xi)+bi(xa − xi)
2 + ci(xa − xi)

3 . (4.14)

Even though the interpolation only uses the closest points, the coefficients ai, bi and ci depend upon
all 2ns points, leading to increased accuracy as the number of points used increases. The interpolation
methods used here are best suited to smooth functions, but are less reliable in the case of sharp velocity
changes.

4.2.4 Lagrangian to Eulerian interpolation

The particle velocity needs to be interpolated to the fluid Eulerian mesh in order to compute the effect
of the particles on the fluid phase. In the point particle approximation limit, the particle information
is interpolated from a single data point. This severely limits the maximum attainable accuracy. The
bluntest way to interpolate from a single point to the Eulerian mesh is to divide the point force equally
among all neighbouring points. A weighting function depending on the distance between the mesh
point and the particle can be used to improve the accuracy. Our code uses a linear function but more
elaborate weighting functions could be implemented later. The function used in the code is, for a force
F which is to be interpolated from a Lagrangian point X to the eight closest neighbouring Eulerian
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mesh points xi. Thus we have:

fi(xi) =
diFi

∑di
, (4.15)

where di = |xi −Xi| is the distance between the particle position and the Eulerian mesh point i.
8
∑

i=1
fi = Fi.

4.2.5 Structure of the code

Equation (4.6) gives the acceleration of a particle. It involves a time derivative for both the fluid and
particle velocities. Consequently, the numerical form of the evolution of fluid and particle velocity is:

un+1 = f(un,up
n,up

n+1) , up
n+1 = g(up

n,un,un+1) . (4.16)

Since both un+1 and up
n+1 need information from the step n+1, they cannot be computed directly.

Instead, an iterative process is used. In a first time, an approximate value of the fluid velocity is
computed:

un+1
(0) = f(un,up

n) , (4.17)

then the particle velocity is obtained using up
n+1
(0) , and the values from the nth step, giving:

up
n+1
(0) = f1(un,up

n,un+1
(0) ) . (4.18)

The value of the fluid velocity is updated using the approximate value:

un+1
(1) = f

(
un,up

n,up
n+1
(0)

)
, (4.19)

up
n+1 is finally updated using un+1

(1) :

up
n+1
(1) = f1

(
un,up

n,un+1
(1)

)
. (4.20)

The process is repeated until values of un+1 and up
n+1 converge to the required precision. The

precision required for the predictor-corrector operation (described in Section 3.3.1) is 10−5, the same
value has been taken for the precision of the convergence. The code can be used for one-way, two-way
and four-way coupling, its logic diagram is given in Figure 4.1 for the two last cases. To recall, in
a one-way coupling model, the particles are affected by the fluid while the effect of the solid phase
on the fluid is neglected. In two-way coupling models fluid and solid phases are fully coupled; both
fluid and particles affect each other. Four-way coupling models add particle-particle interactions, in
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our case collisions. In the case of the one-way coupling, there are two additional steps compared
to the single phase flow simulation; the interpolation from the Eulerian to the Lagrangian mesh and
the computation of the particles velocity. Two-way and four-way coupling models require major
changes. This is especially true for the four-way coupling case with the management of particle-
particle collisions where several steps are needed, it can also be computationally expensive for large
particles concentrations when a large number of collisions occurs at each timestep.

4.2.6 Test of the interpolation from Eulerian to Lagrangian meshes

ns (64,12,12) (64,24,24) (64,48,48) (128,48,48) (128,72,72)

lin 3.7120×10−2 8.6166×10−3 2.0771×10−3 2.4632×10−3 1.9930×10−3

1 2.6070×10−2 6.1284×10−3 1.5549×10−3 1.5556×10−3 1.4968×10−3

2 1.2941×10−3 7.7383×10−5 4.9271×10−6 4.9110×10−6 4.7153×10−6

3 1.8685×10−4 1.0810×10−5 6.9708×10−7 6.5145×10−7 6.5806×10−7

4 1.7308×10−4 1.1684×10−5 8.0029×10−7 7.5850×10−7 7.2488×10−7

5 1.6947×10−4 8.2089×10−6 4.8946×10−7 7.5850×10−7 4.1352×10−7

6 1.5393×10−4 8.4405×10−6 5.6014×10−7 5.1115×10−7 4.8382×10−7

Table 4.1: Average normalised error of the trilinear and spline interpolations of the function g(r,θ ,z) =
0.3cos(z)∗ (2cos(r)− sin(θ)) at 1000 random positions for a pipe of length, L = 2π as a function of
the number of interpolation points ns for Eulerian meshes composed of (Nr,Nt ,Nz) points in the radial,
azimuthal and streamwise directions respectively.

In order to validate the interpolation method used in this work, the accuracy of the interpolation as a
function of the number of grid points of the Eulerian mesh has been tested using a known sinusoidal
function. Table 4.1 gives the normalised error from a known sinusoidal function depending on r, θ ,
and z. The result shows that the accuracy of the interpolation method is dependent on ns as well as the
number of points in the Eulerian mesh. Both are to be expected, as the efficiency of the coefficients
computation increases with ns and the finer the Eulerian mesh, the smaller the average distance
between the particle position and the closest Eulerian mesh point. The trilinear interpolation error is
between 10−3 and 10−2 (at the exception of the coarsest mesh). Even the finest mesh has an averaged
error larger than 10−3, because it is impractical to use a mesh as fine when considering a longer pipe.
Moreover, the error computed here is after a single interpolation, one would expect it to compound
with time. Therefore, the trilinear interpolation does not yield accurate enough results for our needs.
The spline interpolation method shows a much higher accuracy than the linear interpolation. The error
around three orders of magnitude more accurate for ns > 2. The accuracy of the interpolation increases
with ns but diminishing returns are hit as ns gets larger than 4. The value ns = 4 is therefore used in



4.2 Details on the numerical method 115

Initialisation of the program:
(mesh setting, creation
of matrices for finites

difference computations, initial
conditions for u0 and up0)

Predictor-corrector
process for un+1

Interpolation of u at
the particles positions

Computation of particle
velocities up

n+1

Initialisation of the program:
(mesh setting, creation
of matrices for finites

difference computations, initial
conditions for u0 and up0)

Predictor-corrector pro-
cess for un+1 (first guess)

Interpolation of u at
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Computation of particle
velocities up

n+1

Interpolation of up
in the Eulerian mesh

Correction of un+1 with up
n+1

Collision detection

Processing of collision i

Checking for new collisions
due to changes in particles

velocity after collision i

Final value of un+1 (if
collisions occurred)

Iterative process
(Section 4.2.5)

Process repeated
for all collisions

Figure 4.1: Logic diagram of the point particle code for one-way coupling (left) and four-way coupling
(right).
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Figure 4.2: Frequency histogram of initial particle distributions with Np = 100 (red) and Np = 5000
(blue), the solid line represents the values in the continuous case for uniform and Gaussian distributions.
Left: Random uniform probability across the radius. Right: Random Gaussian probability centred
around r = 0.6 with a standard deviation σ = 0.1.

our numerical simulations unless otherwise specified. As for the effect of the Eulerian mesh density,
there is, for the radial direction, little variation between Nr = 64 and Nr = 128. The normalised error
actually is slightly higher for Nr = 128 in some cases, indicating that the efficiency of the interpolation
in the radial direction reaches diminishing returns for less than 64 points. In the other two directions
the accuracy seems to plateau at 48 points, although the pipe length is small in this case. The number
of points in the streamwise direction is then a limiting factor as longer pipes are considered. One
should also note that the function chosen here is sinusoidal. It is possible that the interpolation error is
larger in our flow, especially for turbulent flows where smaller scales are involved.

4.2.7 Initial particle distribution

The initial particle distributions considered in our code (Section 4.2.1) are, for most configurations,
statistically defined. Therefore, one should expect differences between runs with theoretical values. It
is illustrated in Figure 4.2 which shows the frequency histogram for a uniform and a Gaussian particles
initial distributions for Np = 100 and Np = 5000. In both cases, there are deviations; the impact is
less pronounced as the number of particles increases and there are still significant variations from the
theoretical distributions even for 5000 particles. This needs to be taken into account when interpreting
results (with the exception of fully turbulent flows which do not depend on initial conditions).

4.2.8 Range of validity of the model

The range of parameters for which the fully Eulerian model used for the linear stability and linear
transient growth analyses has been evoked in Section 2.1. The restrictions of the point particle model
are, in comparison, loosened due to several of its characteristics:
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• As the point particle model does not rely on an averaging process, there is no lower bound on
the number of particles considered, allowing for the study of a small number of larger particles.
However, the model is ill-suited to very large number of particles, although it can be done if
one is willing to bear the computational cost associated. For example, some of Sardina et al.
(2012) runs considered more than 106 particles, at a high cost of approximately 200000 core
hours per run.

• As particle-particle interactions are taken into account, the dilute regime assumption is not
necessary. However, the model still breaks down for a dense regime (volume fraction over
25%) as this model only considers binary collisions, and particle clustering and sedimentation
is neglected. Moreover, the flow around the particles is not directly modelled, this can lead to
large discrepancies when the particle volume concentration is too high or the particles too large.

• While the point particle approximation breaks down for arbitrarily large particles, it is compat-
ible for a larger particles than the fully Eulerian model. On the other hand, the fully Eulerian
model can include Brownian motion, albeit the one studied in Chapter 2 does not, making the
fully Eulerian model more suited to extremely small particles.

• Finally, while the model used in Chapters 2 and 3 only considers the Stokes drag, the model
used in this chapter also adds the effect the buoyancy, added mass force and effect of the
undisturbed flow to the equation of motion.

Overall, while the point particle model breaks down in some conditions, such as very large particles
or dense suspensions; it is usable in broader parameter range than the fully Eulerian model.

4.3 Turbulent flow with one-way coupling

Willis’ code has been used in Chapter 2 and 3 to test for long term decay rates and transient growth
respectively. It has also been used for various works (Budanur and Hof, 2017; Cerbus et al., 2018;
Pringle and Kerswell, 2010). Our focus, when verifying the code validity, is therefore going to be on
the treatment of the solid phase of the flow.

4.3.1 Particles and fluid cross-correlation

At first, we consider a simplified model in order to test the code, neglecting particle-particle collisions,
with either only the Stokes drag force alone, or the combination of the Stokes drag, pressure gradient,
added mass force terms with one-way coupling between flow and particles. The pipe length considered
is of L = 20r0 (equivalent to 10 diameters). The particles are, initially, uniformly distributed within
the pipe. Figure 4.3 shows the velocity of a given particle as well as the interpolated fluid velocity
at the particle position. The behaviour of the particles with regards to the flow is influenced by the
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Figure 4.3: Radial velocity as a function of time for a particle (green) and the fluid (red) interpolated
at the particle position, with the Stokes drag only. Re = 3000, ρt = 1. Top left: a = 10−2. Top right:
a = 3.5×10−2. Bottom left: a = 10−1. Bottom right: with Stokes drag, pressure drag and added
mass forces, a = 10−2.

particle’s size as one can expect. A case with small particles is given in the top-left graph of Figure 4.3
with a = 10−2. In this case, one can see the particle and fluid velocity are almost identical even as the
fluid velocity shows rapid variations. Since we use one-way coupling here, the fluid is not influenced
by the particles, implying that the particle closely follows the fluid trajectories, as is expected for
small particles (Saffman, 1962). As particles get bigger, they still follow the broad motions of the
flow but there is a delay between fluid and particles velocity, as shown in the top right graph of Figure
4.3. The difference between fluid and particles get more pronounced as the timescale associated to
the particles increases. The largest particles are illustrated in the bottom-left graph of Figure 4.3.
Here the particle and fluid are decoupled; the fluid has little to no influence on the particle behaviour.
Comparing top left and bottom right graph of Figure 4.3 which have the same particle size, but the
first one only considers the Stokes drag force while the second adds pressure drag and added mass
forces. One can observe the effect of the added mass force: it acts as a dampener on particle velocity
even for small particles, where the particles follows the fluid velocity variations closely.
Figure 4.3 is an example where only a single particle is considered. In order to obtain a more
complete picture one can analyse the cross-correlation between fluid and particles. As a reminder, the
cross-correlation between two functions is defined as:

(up ∗u)(τ) =
ˆ

∞

−∞

up(τ)u(τ + t ′)dt ′ , (4.21)
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Stokes drag only
a Delay Cross-correlation

10−2 5.51×10−3 0.925
3×10−2 1.07×10−2 0.303
6×10−2 0.272 0.255

10−1 0.428 0.259

Stokes drag, p-grad and added mass
a Delay Cross-correlation

10−2 5.32×10−3 0.985
3×10−2 3.23×10−2 0.731
6×10−2 4.44×10−2 0.591

10−1 4.89×10−2 0.556

Table 4.2: Delay between fluid and particles and cross-correlation in a fully turbulent, average over
1000 particles for 300 seconds for different particles radius, Re = 3000, ρt = 1.

where τ is the displacement. In the case of discrete functions such as the ones used in this work, the
cross-correlation becomes:

(up ∗u)(τ) =
∞

∑
l=−∞

up(τ)u(τ + l∆t) , (4.22)

where ∆t is the time step. The cross-correlation is normalised to vary between −1 and 1, the higher
the correlation, the closer the two vectors are, if the cross-correlation is equal to 1 they are identical.
On the contrary, negative correlations imply that the values are anti-correlated, higher values of one
variable tend to be associated with lower values of the other. Finally, a cross-correlation of 0 means
that the two variables are independent. When studying a cross-correlation, two relevant parameters
are the strongest cross-correlation when optimising over τ , that we will call (up ∗u)max, and the value
of the displacement associated, referred as τmax.
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Figure 4.4: Autocorrelation (u∗u)(τ) (green) and cross-correlation (up ∗u)(τ) with S = 2.2×10−5

(red), S = 2×10−4 (purple) and S = 2.2×10−3 (blue).
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Figure 4.4 shows example of auto and cross-correlation, the auto-correlation is equal to 1 for τ = 0,
as one would expect. The profile of the cross-correlation strongly depends on the dimensionless
relaxation time. For smaller values of S, the maximal cross-correlation is very close to 1 and τmax is
very small as well, the particle behaves as a tracer and closely follows the fluid. The cross-correlation
decreases as S increases, for the largest values of S it peaks around 0.20−0.30. For these values there
is almost no connection between fluid and particles, this corresponds to heavy particles being almost
decoupled from the fluid phase.
Table 4.2 gives the average values of (up ∗u)max and τmax, considering a thousand particles over
300 seconds in a fully turbulent flow when only Stokes drag force is considered. Smaller particles
follow the fluid very closely with τmax below 10−2, in this case (up ∗u)maxis also close to 1. The
optimised cross-correlation decreases dramatically fast as the particle radius increases. τmax increases
as well, although the change is not as sharp. Even though the particles velocity is dampened when
added mass and pressure gradient force are considered, small particles still follow the flow closely,
as illustrated through the value of (up ∗u)max. (up ∗u)max also decreases when the dimensionless
relaxation time increases, as one would expect. For S = 2× 10−4 and S = 8× 10−4, τmax is lower
and the cross-correlation between fluid and particle is higher when the three forces are taken into
account than when only the Stokes drag force was included. Neither the pressure gradient nor the
added mass force depends on the particle radius, while the Stokes drag term is proportional to the
inverse square of the particle size (Equation 4.6). Therefore, pressure gradient and added mass gain
importance relative to the Stokes force as a increases.

4.3.2 Particles radial distribution

In this section, we analyse the radial distribution of heavy particles, with ρt = 10−3, as a function of
S. All forces are neglected except the Stokes drag force, for the sake of comparison with Sardina et al.
(2012) who used a one way coupled model, where only the Stokes drag force is considering.
Figure 4.5 shows the time evolution of the particle radial repartition evolution with time for various
values of the dimensionless relaxation time. Each run has 1000 particles which are initially uniformly
distributed. The pipe is separated in four zones of equal length (quartiles) along the radial direction.
It is to be noted that when referring to particle position, the centre of the particle is implied. Since
particles cannot penetrate the wall, the possible positions for a particle of radius a are within the
range [0, 1−a]. This can affect the statistical results for the higher particle sizes. For example, if one
considers particles uniformly distributed of radius a = 0.1, the expected average radial position is
r = 0.45 rather than r = 0.5.
Three behaviours are illustrated in Figure 4.5, depending on the dimensionless relaxation time:

• S < 5×10−4 (top left). For small values of S, particles do follow the flow closely, the particles
do not seem to favour a particular radius but the distribution strongly varies with time, with
several peaks where a third of all particles are concentrated in a tenth of the pipe radius-wise.
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Figure 4.5: Proportion of particles in each radius quartile as a function of time. The line color
associated to each quartile are: red for r = 0−0.25, green for r = 0.25−0.5, blue for for r = 0.5−0.75
and black for r = 0.75− 1. values of S considered are, from top left to bottom right: Top left:
S = 2.22×10−4, top right: S = 8.89×10−4. Bottom left: S = 5.56×10−3, bottom right: Stokes
drag only, S = 2×10−1. Re = 3000, ρt = 10−3, Np = 1000.
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Figure 4.6: Histogram of particles radial position at t = 900. Re = 3000, ρt = 10−3, Np = 1000.
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• 9×10−4 < S < 2×10−3. For medium relaxation times, particles significantly drift towards the
wall, between r = 0.75 and r = 1, while there is some variation in the rest of the pipe no other
region stands out.

• S > 2×10−3. As the S gets larger, particles become less coupled to the flow. The particles stay
uniformly distributed with very little variation in time.

The case S = 8.89×10−4 illustrates the transition between the first and second behaviour. The particle
concentration is highest close to the wall although the difference is not as pronounced as for larger
values of S and there are strong distribution variations with time such as observed for S = 2.22×10−4.
In order to have a more detailed picture of the repartition of the particles in the pipe, we studied
snapshots in time of the particles radial position. Figure 4.6 gives histograms of the particles radial
position for different dimensionless relaxation times. Each run considers 1000 particles and the
histogram bin width is of 0.01, such that in the case of a uniformly distributed particles each bin
would contain ten particles.

• Particles start to migrate closer to the wall at S = 8.89×10−4 although there are still transient
peaks of concentration in the rest of the pipe.

• For S = 2×10−3, particles cluster very close to the wall, with almost a fifth of the particles in a
radius between 0.99 and 0.1 at this time.

• For 2×10−3 6 S 6 1.61×10−2 particle concentration is still higher close to the wall but the
sharpness of the peaks gets less pronounced as the S increases until the particle distribution is
homogeneous again for S = 2.22×10−2.

One can compare the results to Sardina et al. (2012), who studied a one-way coupled point particle
model limited to Stokes drag force for heavy particles, with a density ratio ρp/ρ f = 1/770, in the case
of wall-flows. While their different geometry, a channel flow, does not allow for direct comparison,
the results are qualitatively similar. Very small particles act as tracers but as particle size increases, the
particles accumulate close to the wall. The magnitude of the accumulation towards the wall rapidly
increases with the particles size until a maximum, wall-accumulation then decreases as the particle
size continues to increase.

The particles’ accumulation towards the wall is likely to be caused by turbophoresis. Turbophoresis is
the tendency of particles to migrate towards zones where turbulence is weaker, in this case close to
the wall (Caporaloni et al., 1975; Sardina et al., 2012). When comparing the amplitude of the effect
of particle-wall accumulation, it is more pronounced in the case of the wall channel flow. (Sardina
et al., 2012) found a ratio of over a hundred between the particle concentration close to the wall and
the average concentration, while we find a ratio of at most 20 for the pipe flow.
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4.3.3 Particle-particle collision rate

c Np = 100, ρt = 1 Np = 1000, ρt = 1 Np = 100, ρt = 10−3 Np = 1000, ρt = 10−3

10−4 3.5 20 10 235

3×10−4 14 80 40 410

10−3 105 940 140 1620

3×10−3 400 9700 360 4760

Table 4.3: Particle collision rate as a function of the flow volume fraction; c = Np4/3πa3

Vp
, with Vp as

the pipe volume. Here, only the Stokes drag force is taken into account.

c Np = 100, ρt = 1 Np = 1000, ρt = 1 Np = 100, ρt = 10−3 Np = 1000, ρt = 10−3

10−4 0.1 2.5 10 135

3×10−4 0.4 3 20 410

10−3 0.9 8.2 70 1170

3×10−3 3.2 25 200 3200

Table 4.4: Particle collision rate as a function of the flow particle volume fraction c = Np4/3πa3

Vp
, with

Vp as the pipe volume. In this case, the stokes drag, pressure gradient and added mass forces are taken
into account.

Until now, particle-particle collisions were neglected. When considering one-way coupled particulate
flows, this assumption can be made safely. Indeed, there is no feedback from the particles to the fluid:
a simulation with Np particles is equivalent to Np simulations of a flow containing a single particle.
However, the effect of the solid phase on the fluid needs to be included when studying the stability of
a particulate flow. One-way coupled simulations with varying parameters where the collision rate is
measured were conducted. While the collision rate obtained here with a one-way coupling model
is not equal to the one that would be obtained with a two or four-way coupled model; it still gives
an estimate of the parameters regimes in which neglecting particle-particle collisions is a reasonable
assumption.
Collision rates are shown in Tables 4.3 and 4.4. Several patterns emerge from the data. The particle
collision rate increases with the volume fraction, this result was expected. The increase in collision
rate, as c increases, is steeper when only the Stokes drag is considered than when Stokes drag, added
mass and pressure gradient are considered. However, due to the limited number of cases considered
we cannot infer a precise scaling. More interesting is the effect of the number of particles. Even at a
constant volume fraction, c; flows with a larger number of particles have a much higher collision rate,
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with a more than tenfold increase between 100 and 1000 particles. The addition of pressure gradient
and added mass forces significantly decreases the collision rate as well. A possible explanation is the
velocity dampening caused by the added mass force, as observed in Section 4.3.1. Even though only
dilute particle concentration were considered, there are cases in which collision rates are too high
to safely neglect collisions. This needs to be taken into careful consideration when using a two-way
coupling model.

4.4 Conclusion

One-way coupling computations showed that there is a particle size range for which the particles
accumulate towards the wall, even when particle rotation is not taken into account. The code is still in
development, and further effects such as particles rotation and particle-particle collisions are in need
of testing and final corrections. The results shown here only consider one-way coupled flows with low
particles volume fractions. The code has not been parallelised in the case of two way coupled yet.
Therefore we are limited to relatively low amounts of particles (of the order of one thousand) and
smaller pipes where the effect of the particles on the fluid phase is minimal. The results are promising
and the point particle model presented in this chapter is a versatile tool that should allow for a more
advanced study of transition to turbulence in particulate pipe flows.



General conclusion
This thesis focused on the influence of the solid phase on the stability of a particulate pipe flow from
several angles through the use of numerical simulations. In Chapter 2, we did analyse the linear
stability of a particulate pipe flow where the solid phase is modelled with an Eulerian formulation.
The analysis has been made by means of an eigenvalue solver. In the case of homogeneous particle
distribution, the particulate pipe flow remains linearly stable, as is the single phase pipe flow (Lessen
et al., 1968). The effect of the particle mass concentration f is monotonic and almost linear. On the
other hand, the dimensionless relaxation time S affects the growth rate in a more complex way, with a
nonmonotonic dependency and two extrema, one stabilising and one destabilising. These extrema
also scale with both α and Re.

However, the results are significantly different when considering nonhomogeneous particles distri-
butions. In particular, preferential concentrations of particles at a given radius which are closer to
the experimental observations (Matas et al., 2004b). It was found that the particulate flow is linearly
unstable within some parametric range. Most noticeably the flow can only be linearly unstable for
intermediate values of the Reynolds number. For low Reynolds numbers, the flow is dominated by
viscous diffusion, while in the case of high Reynolds numbers, fluid and solid phases are decoupled.
As for the effect of the shape of the particles distribution, the effect of particles on stability get more
pronounced as particles get more clustered (corresponding to a decrease of σ ). When considering the
radius of the annulus at which particles are concentrated, linear instability is strongest when rd ≈ 0.65,
very close to the both in terms Segré-Silberberg radius (Segre and Silberberg, 1962). This is also the
radius around which the eigenfunctions of the unstable mode are the largest.

Chapter 3 extended the study of the fully Eulerian model to linear transient growth with a LDNS code
adapted from Willis (2017). The optimal linear transient growth of the particulate pipe has been found
to scale with Re2 while the time at which the peak in energy is reached increases linearly as a function
of Re, as seen in the single phase pipe flow (Bergström, 1993). The transient growth is increased
by the addition of particles for all values of S. The transient growth depends nonmonotonically on
S and is maximised for an intermediate value of S: this value is almost independent of Re and σ .
Similarly to what has been found for the linear stability analysis, the effect of the solid phase is much
stronger for nonhomogeneous particle distributions with increase of the transient growth of over 200%
compared to that of the single phase transient growth. The transient growth is most pronounced when
particles are concentrated around radii, rd = 0.6−0.7. This is consistent with previous results from
this work and from the literature (Matas et al., 2004b; Segre and Silberberg, 1962). The optimal initial
perturbations peak velocities have also been studied for a S = 10−3 (for this value of S the particulate
flow can be linearly unstable). It follows that the linear transient growth analysis did not highlight any
new mechanism.

In the fourth chapter, we presented a point particle model developed with the purpose to extend the
scope of this work. The code is still in development, but the first results are promising. Studying
one-way coupled particles, we highlighted several regimes depending on the particles size. Smaller
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particles follow the fluid phase closely, acting as tracers. As particles get bigger, they largely follow
the motions of the flow while the largest particles are almost independent from the fluid. The way
particles are distributed in a turbulent flow is also consistent with these regimes. Small particles do
not show a preferential radius but their radial distribution strongly varies with time. This behaviour
is likely caused by particles following turbulent structures. The largest particles do not show a
preferential radius either, and are much less affected by the fluid, with very little changes in radii
across time. The most interesting case is the one of medium-sized particles, which have a marked
tendency to aggregate in the region close to the wall. This tendency has been observed in shear flows
before (Sardina et al., 2012).

Overall, this thesis highlights the important role of the particle size on the particulate flow stability as
particles can have either a stabilising or destabilising effect on the stability depending on their sizes.
This is consistent with literature results on both numerical and experimental works (Klinkenberg
et al., 2011; Matas et al., 2003). Being able to estimate the effect of particles on the stability in
function of their size can allow to better estimate the state of industrial particulate flows who are
not easily observable, such as inside pipelines; and to delay the transition to turbulence in a flow
by seeding it with particles of the appropriate size. The second critical parameter is how the solid
phase is distributed through the pipe, as the location of the particles has a dramatic effect on the flow
stability. The effect of particles is consistently the strongest in the region near the wall, in particular
close to the Segré-Silberberg radius. Albeit most of these results have been obtained in a simplified
framework, it illustrates how the concentration of particles in an annulus could be a key step in the the
transition to turbulence.

The point particle model has not been used extensively so far, it is a flexible method and there are
many possible ways to extend this work. Notably, one could expand this work on how the particles
distribution in the pipe is affected by the particles size for both laminar and turbulent flows. Indeed,
the particles position seems to be one of the key parameters in the transition to turbulence, as indicated
by both this work as well as previous experimental and numerical results. A better understanding on
how particles get distributed in the flow is, therefore, critical when one aim to estimate the conditions
for which the transition to turbulence occurs. One can also analyse the relative importance of the
various forces, and of the particles rotations and collisions on the flow depending on the flow regime.
The interest is two-fold: allowing for a better understanding of the underlying mechanisms between
the transition to turbulence of particulate pipe flows; knowing the relative importance of the different
forces as a function of the parameter space. This allows for a more efficient study of the problem by
neglecting the less relevant forces (or particle-particle interactions). Of interest is also the role of the
particles in the transition to turbulence within this new model framework, and how it corroborates
with the previous results obtained with the fully Eulerian model, as well as the work done on pipe
flows (Matas et al., 2003; Yu et al., 2013).
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Future work can be considered for the fully Eulerian model used in Chapters 2 and 3. For example by
using more complex particle distributions, closer to real flows. Additional interaction forces can also
be taken into account in order to increase the range in which the model is valid. However, the fully
Eulerian method has inherent limitations regarding the physical mechanisms and the range in which
the results are valid. On the other hand, the point particle model offers several avenues for future work.
As is stands, the point particle model does not include rotation. Taking into account particles rotation
is necessary to simulate the process of particle migration in laminar flows (Segre and Silberberg, 1962).
The position of the particles is highly relevant to flow instability and the development of turbulence.
While a carefully chosen initial particles position might give a reasonably accurate approximation of
the particles position after their migration for short time scales, it is probably only of limited interest.
Therefore, the current point-particle code is, as it stands, not well suited to the study of instability
of the flow. It is, however, more adapted to the study of fully turbulent flows. In particular one can
study turbulence modulation and how turbulence is affected by varying the particles parameters, such
as size and density as well as the mass fraction ratio and whether the distribution is monodisperse
and polydisperse. Another phenomenon to consider is turbulence decay, and in which conditions the
addition of particles can either delay or provoke it. The point-particle model can be adapted to include
the rotation of particles. The rotation rate can be obtained using an empirical formula (Ferrante and
Elghobashi, 2003), the effect of collisions rate can be computed in the soft-collision model framework
(Zhu and Yu, 2002; Zhu et al., 2007). With the particles’ rotation taken into account, the point particles
model can be used to study the flow stability. One can consider changes in the critical Reynolds
number, whether the addition of particles can lead to new paths of transition to turbulence, and the
statistical lifetime of the perturbations in function of the particles characteristics.
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Appendix A

Transient growth, derivation of the ad-
joint system of equations

A.1 Direct system of equations

Reminder of the system of equations used in chapter 2 and 3:
The fluid equation of motion (NS):

∂tu =−∇p −U ·∇u −u ·∇U+
1

Re
∇

2u +
f N0

SRe
(up −u) . (A.1)

The particle equation of motion (NSp):

∂tup =−up ·∇U −U ·∇up +
1

SRe
(u−up) . (A.2)

The conservation equation for the density of particles (Neq):

∂tN =−∇ · (N up) . (A.3)

Mass conservation of the fluid:

∇ ·u = 0 . (A.4)

The transient growth problem is about finding which perturbation u for a given initial energy E0 will
produce the maximum energy Et at a given time T. This is equivalent to maximising L .

L =

〈
1
2
(m f u2(T )+mp u2

p(T ))
〉
−λ

[〈
1
2
(m f u2(0)+mp u2

p(0))−E0

〉]

−
ˆ T

0
⟨ϒ ·NS⟩dt −

ˆ T

0
⟨ϒp · NSp⟩dt −

ˆ T

0
⟨Π · [∇ ·u]⟩dt −

ˆ T

0
⟨Γ ·Neq⟩dt , (A.5)

with
〈
·
〉

the volume integration.

L is maximised when δL = 0, this corresponds to (with mp =
ρp
N ) :

δ

〈
mp u2

p

〉
=

〈
2mp up δup −ρp u2

p
δN
N2

〉
=

〈
2mp up δup −mp u2

p
δN
N

〉
, (A.6)

δ

〈
1
2

(
m f u2(T )+mp u2

p(T )
)〉

=

〈
m f u(T )δu(T )+mp up(T ) δup(T )−mp up(T )2 δN

N

〉
,

(A.7)
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and:

δ

[
λ

〈
z,

1
2

(
m f u2(0)+mp u2

p(0)
)〉]

= λ

〈
m f u(0)δu(0)+mp up(0) δup(0)−mp u2

p(0)
δN
N

〉
,

(A.8)

δL is expressed by:

δL =

〈
m f u(T ) δu(T ) + mp up(T )δup(T )−mp u2

p(T )
δN
N

〉

−λ

〈
m f u(0)δu(0)+mp up(0) δup(0)−mp u2

p(0)
δN
N

〉

−
ˆ T

0
⟨δϒ · NS⟩ dt −

ˆ T

0
⟨δϒp · NSp⟩ dt −

ˆ T

0
⟨δΠ · [∇ ·u]⟩ dt −

ˆ T

0
⟨δΓ ·Neq⟩ dt

−
ˆ T

0
⟨ϒ · δ (NS)⟩ dt −

ˆ T

0
⟨ϒp ·δ (NSp)⟩ dt −

ˆ T

0
⟨Π · [∇ ·δu]⟩ dt −

ˆ T

0
⟨Γ · δ (Neq)⟩ dt .

(A.9)

The aim is to obtain the adjoint equations looking as:
δu/up /N . (Adjoint equation) , avoiding terms like δ (∇X) or δ (∂tX)

Let us derive the adjoint equation term by term. Small reminder, all variables are, in our model,
periodic, then using the Stokes theorem, one can prove that

˝
V ∇(X) =

‚
S X = 0.

Time-related terms for Equation (A.1):

ˆ T

0
⟨ϒ ·δ (∂tu)⟩dt =

ˆ T

0
δ · ⟨ϒ∂tu⟩ dt −

ˆ T

0
⟨δu · ∂tϒ⟩ dt (A.10)

= ⟨ϒ(T ) · δu(T ) − ϒ(0) · δu(0)⟩ −
ˆ T

0
⟨δu · ∂tϒ⟩ dt , (A.11)

similarly for equation ((A.2)):

ˆ T

0
⟨ϒ · δ (∂tu)⟩ dt = ⟨ϒp(T ) · δup(T ) − ϒp(0) · δup(0)⟩ −

ˆ T

0
⟨δup ∂tϒp ⟩ dt , (A.12)

and Equation (A.3):

ˆ T

0
⟨Γ · δ∂tN ⟩ dt =

ˆ T

0
⟨ ∂t(ΓδN) ⟩dt −

ˆ T

0
⟨δN · ∂tΓ⟩ ,dt

= ⟨ Γ(T ) · δN(T ) − Γ(0) · δN(0)⟩ −
ˆ T

0
⟨δN · ∂tΓ⟩ dt . (A.13)
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Linear convective term for Equation (A.1):

ˆ T

0
⟨ϒ · δ (U∂zu)⟩ dt =

ˆ T

0
⟨ϒ · U∂z(δu) ⟩ dt =

ˆ T

0
⟨U ·∂z(ϒδu)⟩ dt −

ˆ T

0
⟨δu · U∂zϒ⟩ dt

=−
ˆ T

0
⟨δu · U∂zϒ⟩ dt , (A.14)

similarly the linear convective term for Equation (A.2):

ˆ T

0
⟨ϒp · δ (U∂zup)⟩ dt =−

ˆ T

0
⟨δup · U∂zϒp ⟩ dt , (A.15)

and for Equation (A.3):

ˆ T

0
⟨Γ · δ ∇(N0 up)⟩ dt = −

ˆ T

0
⟨δN0 · up ∇Γ⟩dt −

ˆ T

0
⟨δup · N0∇Γ⟩ dt . (A.16)

Second linear convective term for Equation (A.1):

ˆ T

0

〈
ϒ · δ (ur U′ ẑ)

〉
dt =

ˆ T

0

〈
δu ·

(
U′

ϒz r̂
)〉

dt , (A.17)

similarly for Equation (A.2):

ˆ T

0

〈
ϒp · δ (upr U′ ẑ)

〉
dt =

ˆ T

0

〈
δup ·

(
U′

ϒpz r̂
)〉

dt , (A.18)

and for Equation (A.3):

ˆ T

0
⟨Γ · U∂z(δN)⟩ dt = −

ˆ T

0

〈
δ (N0 +N′) · U∂zΓ

〉
dt . (A.19)

The pressure term for Equation (A.1):

ˆ T

0
ϒ∇ · ⟨δ p⟩ dt =

ˆ T

0
⟨δ (∇pϒ)⟩dt −

ˆ T

0
δ p · ⟨∇ϒ⟩ dt

= −
ˆ T

0
δ p · ⟨∇ϒ⟩ dt . (A.20)

Diffusion term for Equation (A.1):

ˆ T

0

〈
ϒ · ∇

2
δu
〉

dt =
ˆ T

0
⟨∇(ϒ∇δu)⟩ dt −

ˆ T

0
⟨∇ϒ∇δu⟩ dt
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= −
ˆ T

0

〈
δu · ∇

2
ϒ
〉

dt +
ˆ T

0
⟨∇(∇ϒ · δu)⟩ dt

= −
ˆ T

0

〈
!δu · ∇

2
ϒ
〉

dt , (A.21)

Stokes terms for Equation (A.1):

ˆ T

0

〈
ϒ · δ

[
K
ρ f

(N0 +N′)(up −u)
] 〉

dt =

ˆ T

0

〈
δup ·

[
K(N0 +N)

ρ f
ϒ

]〉
dt −

ˆ T

0

〈
δu ·

[
K(N0 +N)

ρ f
ϒ

]〉
dt

+

ˆ T

0

〈
δN0 ·

[
K
ρ f

(up −u)
] 〉

dt +

ˆ T

0

〈
δN ·

[
K
ρ f

(up −u)
]〉

dt , (A.22)

and Equation (A.2):

ˆ T

0

〈
ϒp · δ

[
K
mp

(u−up)

]〉
dt =

ˆ T

0

〈
δu ·

[
K
m

ϒp

]〉
dt −

ˆ T

0

〈
δup ·

[
K
mp

ϒp

]〉
dt

+

ˆ T

0

〈
δN0 ·

[
K
ρ f

(up −u)
]〉

dt +

ˆ T

0

〈
δN ·

[
K
ρ f

(up −u)
]〉

dt .

(A.23)

The final expression of δL is:

δL =
〈

δu(T )(m f u(T )−ϒ(T ))
〉
+
〈

δu(0)(ϒ(0)−λ m f u(0))
〉

+ ⟨δup(T )(mp up(T )−ϒp(T ))⟩ + ⟨δup(0)(ϒp(0) −λ mp up(0))⟩

−
〈

δN(T )
mp

N(T )
up(T )

〉
−
〈

δN(0) λ
mp

N(0)
up(0)

〉

−
ˆ T

0
⟨δϒ · NS⟩ dt −

ˆ T

0
⟨δϒp · NSp⟩ dt −

ˆ T

0
⟨δ Π · [∇ ·u]⟩ dt −

ˆ T

0
⟨δ Γ · Neq⟩ dt

+

ˆ T

0

〈
δu · ∂tϒ + U∂z ϒ − ϒzU′ r̂+ ∇Π+ ν∇

2
ϒ +

K N0

ρ f
ϒ − K

mp
ϒp

〉
dt

+

ˆ T

0

〈
δup ·

[
∂tϒp +U∂z ϒp −ϒpzU′ r̂+N0 · ∇Γ

K
mp

ϒp −
K N0

ρ f
ϒ

]〉
dt

+

ˆ T

0

〈
δN′ · ∂tΓ+U∂zΓ+up∇Γ+

〉
dt . (A.24)



148 Transient growth, derivation of the adjoint system of equations

A.2 Adjoint system of equations

In order to maximise the variational L we have to find the value for which δL = 0. It can be done
by having each of the term of Equation (A.24) to be equal to 0. The integrals terms gives the modified
set of Navier-Stokes equations used in chapter 2, equal to the Equations (2.15)-(2.18), as well as the
adjoint system of equations:

∂tϒ =−U ·∇ϒ + ϒ ·U − −∇Π− 1
Re

∇
2
ϒ − f N0

SRe
ϒ +

1
SRe

ϒp , (A.25)

∂tϒp =−U ·∇ϒp + ϒp ·U+N0 ∇Γ+
f N0

SRe
ϒ − 1

SRe
ϒp , (A.26)

∂tΓ =−U ·∇Γ−up ·∇Γ . (A.27)

The other terms being equal to 0 produce another set of conditions:

u(T ) = ϒ(T ) , up(T ) = ϒp(T ) , (A.28)

λu(0)−ϒ(0) = 0 , λup(0)−ϒp(0) = 0 . (A.29)

A.3 Additional plots
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Figure A.1: Ratio of growth between particulate and single phase flow as a function of S for f = 0.1
and Re = 500 in the case of a Gaussian particle distribution centred around rd = 0.7. Uniform
distribution (red), σ = 0.15 (green), σ = 0.12 (dotted blue), σ = 0.10 (purple).



Appendix B

Point particle code, misc.

B.1 Non-dimensionalisation details for point particle model

The dimensional variables used are the centreline velocity U0, the radius of the pipe r0 and the ratio
between particle and pipe radius a′ = a/r0. The time is normalised as T0 = r0/U0.

The dimension of the time dependent term is: mpU0
T0

.
The right-hand side terms have to be normalised by this constant to obtain a dimensionless equation.

−6πaµ

(
up −u− a2

6 ∇2u
)

is the drag force term. The dimension of the drag force term is:

T0

mpU0
6πaµ U0 =

6πaµT0

4/3πρpa3 =
9
2

1
a2

1
ρp

T0 µ . (B.1)

Using µ = νρ f =
ρ f U0r0

Re =
ρ f L2

0
ReT0

we get the dimensionless form of the drag term:

−9
2

L2
0

a2 ρt
1

Re

(
up

′−u′− a2

L2
0

∇
′2u′
)
=

1
SRe

(
u′

p −u′− a2

L2
0

∇
′2u′
)

, (B.2)

with S = 2
9

a2

L2
0
ρt the dimensionless relaxation time and ρt = ρ f /ρp the density ratio.

−m f
2

d
dt

(
up −u− a2

10 ∇2u
)

is the added mass term , additional inertia because the particle has to
displace the fluid. This term is identical to the time-derivative term except for fluid instead of particle
mass so the non-dimensionalisation is straightforward:

−ρt

2
d′

dt

(
u′

p −u′− a′2

10
∇
′2u′
)

. (B.3)

m f
D
Dt u is the pressure gradient of the flow (without particle effect), same principle than added mass.

Note that it corresponds to −∇p which is computed by our numerical program. The dimensionless
form is:

ρt
D′

Dt
u′ , (B.4)

(mp −m f )g is the buoyancy term. Dimension, T0
mpU0

(mp −m f )g, giving: (1−ρt)Ri
with Ri = g r0

u2
0
g the Richardson number. For the direction of g, g =−sin(θ)er + cos(θ)eθ .
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