Quasi-static magnetohydrodynamic turbulence between two
and three dimensions

A. Pothérat
Applied Mathematics Research Centre, Coventry UniverSibventry CV1 5FB, UK
Corresponding author: alban.potherat@coventry.ac.uk

Abstract

Recent concepts of quasi-static MHD turbulence betweemeplealls are presented. It is shown that the dimen-
sionality of this type of flow is governed by the ratio of théfasion length associated to the Lorentz force to the
channel width. Depending on turbulence dimensionalitgetdifferent dissipation mechanisms are activated that
correspond to three different scalings for the intensityuobulent fluctuations. In all three regimes, the relative
turbulent intensity is found tincrease with the applied magnetic field, in apparent contrast to camiyaccepted
ideas.
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Introduction

Turbulence under an externally imposed, static magnetit fias a well-known tendency to two-dimensionality
[E]. This effect is driven by the diffusive nature of the Late force at low magnetic Reynolds numbeér [9] which
smoothes out velocity gradients along the magnetic fiele: firtal dimensionality of the flow, is however strongly
determined by the nature of the boundaries of the fluid domaithe generic case of a channel perpendicular to
the field and bounded by two walls, Hartmann boundary layersdevelop along the walls preclude a fully quasi-
two dimensional state, so the flow can be at best two-dimaasia its bulk, orquasi-two-dimensional [@f/ ]
With non dissipative boundaries (periodic or slip-free badary conditions), the transition between strictly two-
dimensional and three-dimensional states is mainly gadehy the stability properties of large two-dimensional
structuresl__[l3]. When walls are present, by contrast, the $kates span a continuous spectrum of states involving
different types of three-dimensional effects (presenceasfsversal velocity, weak velocity gradients preserving
topological equivalent between planes perpendiculargartagnetic field, full three-dimensionalitﬂ B , 2]
Considering a generic channel configuration, we show tresdetistates of dimensionality are solely determined
by the ratiol, /h of the diffusion length associated to the Lorentz force ®¢hannel width. We show that three
different states can be distinguished, each of which cleriaed by a how the intensity of turbulent fluctuations
scales with the externally applied forcing. These scalingdy that in the process of making the flow quasi-two
dimensional, the effect of the magnetic field is to lower &alissipation to the point where it actually increases the
intensity of turbulence. These theoretical concepts aréiee experimentally on the FLOWCUBE experimental
platform where turbulence is driven in a cubic containerrjgéting electric current at one of the Hartmann walls
of the vessel. In FLOWCUBE, the intensity of the forcing isasered directly by the quantity of current that is
injected in the flow.

Dimensionality and turbulence intensity

Consider a horizontal channel of widih filled with liquid metal (densityp, viscosityv, electric conductivity

o) and pervaded by a homogeneous static magnetic Beld Both the tendency to two-dimensionality and the
sources of three-dimensionality of MHD flows can be seen fiteercurl of the Navier-Stokes equation and the cur
| of Ohm’s law within the quasi-static approximation, whietad:

8.0, =-V,-J, = %(u SV, +w- V) — %”v?wz, 1)
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These equations express that horizontal layers of fluid nnle fed by electric current if either inertia or viscous
friction exist there to balance the Lorentz force. Furthemm any electric current "leak” pulled into the core
by either of these mechanisms results in the presence ofityelgradients along the magnetic field, and hence
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Figure 1: Schematic representation of generic flow confiijpma in a channel in an external magnetic field. For
illustration purposes, the flow is driven electrically byeicting electric current at the bottom wall. Hartmann layer
are represented in light grey (g)<< h (b)l, = h (c)l, >> h.

in three-dimensionality. Conversely, quasi-two-dimensility is only possible if none of these forces acts, and
0.u = 0 in the core. Velocity gradients would then still exist in tHartmann layers because of viscous friction,
and accordingly, the entire horizontally divergent elieaturrent flows there. The amount of current available to
flow into horizontal planes is determined by the intensityhef forcing driving turbulence (or equivalently, by the
total current directly injected into the flow, if it is eleittally driven, as on Fig[]1). The height of the region
where the the forcing current is consumed by this mechanist@richines the distance over which the Lorentz
force is able to diffuse momentum. Depending on whether inuctire of sizd; and typical velocity/(, ), the
mechanism is predominantly viscous or inertialrespectively scales as:

s 11 (N) 1/2

17~ %Ha or Y ~ 1 NY= 3)

z

where Ha = Bh(p/ov)'/? and N = 0B, /(pU) are the Hartmann number and interaction parameter. The

scaling forl™) was first proposed bY/|[9] and experimentally verified[By [ieTatio of the diffusion length. to
the height of the channel determines the dimensionalithefiow, leading to three different cases illustrated on
Fig.[.
If I, < h, momentum diffusion by the Lorentz force does not reach@bbth boundaries of the channel, electric
eddy currents spread over < h and the flow is three-dimensional, with regions near one it bbannel walls
(depending on the geometry of the forcing) where only a wesgdidual flow exists.
If I, ~ h, structures extend across the whole channel but threerdiomgality persists in the bulk.
If I, > h, the flow is quasi-two dimensional and electric current flavsost exclusively in the Hartmann bound-
ary layers.
It is important to notice thaltﬁN) is scale-dependent and so strictly speaking, for a turbéiem to be quasi-two
dimensional, all scales have to sati$fy/, ) > h. Hence, an intermediate state exists where large scales are
guasi-two-dimensional while smaller scales are threeedEionaIlIb[M]. The three different regimes of flow di-
mensionality correspond to different electric currentygadnd therefore different levels of Joule dissipation. We
shall now characterise them through the relation betwesinig and the measured Reynolds number. For this, we
start by noticing that the total current induced by the foggior directly injected into the flow, spreads between
the bulk (.), and through each of the Hartmann layér and I;), so thatl = I. + I, + I;. Sincel. diverges
into the core over the height of the structufe~ 27l max{l., h}J5. The horizontal current densit¥; is then
estimated from{|1) using only either the first or the seconah ia the RHS of the equation, depending on whether
viscous effects or inertia dominate, respectively. Uslitig = Uyl /v andRey = (I /27v,/po) to express these
scalings non dimensionally (indicésndt refer to bottom and top plates), it comes thdt if> 1 then the flow is
quasi-two-dimensional[8] 1] and

Rep ~ Rey. 4)
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Figure 2: Re, Ha~'/3 and Re, Ha='/% vs. Re", representing the RMS of velocity fluctuations near thedsott
wall. Solid, dashed-dotted and dashed lines respectieghesent scaling lawgl (4] (5) ahd (6).

If I, < 1orl, ~ 1, the core current s pulled in by inertig [7], and
Rey ~ Reg/Q. (5)

Furthermore[{¥) remains valid for any valugl of 1 if the current in the core is pulled by viscous effects. Rezgm
where this scaling holds shall therefore be cailesitialess.

While scalings near the bottom wall give a measure of turiititgensity where it is forced, scalings near the top
wall give a measure of its intensity away from where the fogds applied. It turns out thatif ~ horil, > h,
then scalings foRe, are essentially the same as ¢, albeit for a small correcting factdrl[7]. If < h, on the
other hand, the top wall is outside of the region where tuhcé diffuses under the action of the Lorentz force.
Any residual flow there is viscously entrained by the neighib turbulence, and damped by the Lorentz force.
This balance provides a scaling of the form

Ret ~ Reé/Q, (6)

which characterises the residual flow in this region. Alletniscalings are observed experimentally to a great
precision, over a wide range of values®é, and Ha (see Fig.[R). For the purpose of the experiméty;, and

Re; were built on the RMS of velocity fluctuations and half of tleale at which energy was injected into the
flow ( materialised by the spacing between current injectiectroded.;). For low forcing, the inertialess regime
dominates both near the wall where turbulence is forcedtama/all where it isn’t. For high magnetic fields (hence
IEN)(ZL)/h > 1), a transition takes places to the inertial regime whigrdn@ls in both regions. At lower fields,

WherelgN)(lL)/h < 1, this transition is only visible where turbulence is forc&tie large scales of turbulence do
not reach the top wall anf](6) becomes valid in this region.

Can magnetic fields enhance turbulence ?

An important feature of the measurements of turbulent sitgron Fig. [2 is that the prefactor in all scalings
laws linking Rey, to Rey depends orf{a. This wasn'’t foreseen in theory and must be attributed tddabhethat
while the injected currenk induces an average flow, we diagnosed turbulent fluctuatishih only receive a
fraction of the energy of the average flow. It appears thatrdie of the RMS of velocity fluctuations to the
average velocity not only depends &l but monotonically increases with it. In other words, thatigk turbulent
intensityincreases with the magnetic field, in apparent contradiction to theelydaccepted idea that the magnetic
field should suppress turbulence !

The paradox can be resolved by considering the energy lmlategrated across the channel and observing that



most of the power injected by the forcifis dissipated ohmically. Using the expression of the Larémtce put
forward by [9], ohmic dissipation integrated over the chalns expressed as:

h h
/ ejdz = —0B2</ u- A0, u)dz ~ —o BT h [(u) - 07, (u) + (u' - §2,u)],
0 0

where brackets and prime respectively refer to average antlifiting quantities. Approximating the derivatives
aso?, (u) ~ (Up)?/12 andd?, v’ ~ (U}) /12, and using[(B) with reference velocitigs,) and(U;?)!/? to evaluate
respectivelyl, andl’, it comes that:

4 h
/ €jdz ~ —pl—<Ub>3 (1 + a3) , (7
0 i

wherea = (U}?)'/2 /(U3 is the relative intensity of turbulent fluctuations. Theatgtower driving the flow across
the channel is determined by the injected current as:

h
1B
| Pudz 5w, ®)

and by virtue of[(b), equatingl(8) and (7) féfa >> 1, leads to an estimate for.
Qa~ %Hal/?’Re;/G. (9)

Experimental data support the scaliffi:'/? and confirm that fluctuations become more intense as the feld i
increased. It must be noted that this scaling applies tg figveloped turbulence, for whiekh > 1. The under-
lying mechanism is that while the magnetic field does sugptaebulence, it does so by elongating structures.
In the process, velocity gradients are reduced, and eddgmsrresponsible for the ohmic dissipation are sup-
pressed. The resulting structures are closer quasi-tmeskionality and dissipate much less energy than their
three-dimensional counterpart. As a result, turbulentze more kinetic energy. In this sense, the application of
a static magnetic field can indeed enhance turbulence.
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