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Abstract

Recent concepts of quasi-static MHD turbulence between plane walls are presented. It is shown that the dimen-
sionality of this type of flow is governed by the ratio of the diffusion length associated to the Lorentz force to the
channel width. Depending on turbulence dimensionality, three different dissipation mechanisms are activated that
correspond to three different scalings for the intensity ofturbulent fluctuations. In all three regimes, the relative
turbulent intensity is found toincrease with the applied magnetic field, in apparent contrast to commonly accepted
ideas.
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Introduction

Turbulence under an externally imposed, static magnetic field has a well-known tendency to two-dimensionality
[5]. This effect is driven by the diffusive nature of the Lorentz force at low magnetic Reynolds number [9] which
smoothes out velocity gradients along the magnetic field. The final dimensionality of the flow, is however strongly
determined by the nature of the boundaries of the fluid domain. In the generic case of a channel perpendicular to
the field and bounded by two walls, Hartmann boundary layers that develop along the walls preclude a fully quasi-
two dimensional state, so the flow can be at best two-dimensional in its bulk, orquasi-two-dimensional [9, 6].
With non dissipative boundaries (periodic or slip-free boundary conditions), the transition between strictly two-
dimensional and three-dimensional states is mainly governed by the stability properties of large two-dimensional
structures [3]. When walls are present, by contrast, the flowstates span a continuous spectrum of states involving
different types of three-dimensional effects (presence oftransversal velocity, weak velocity gradients preserving
topological equivalent between planes perpendicular to the magnetic field, full three-dimensionality) [4, 7, 2].
Considering a generic channel configuration, we show that these states of dimensionality are solely determined
by the ratiolz/h of the diffusion length associated to the Lorentz force to the channel width. We show that three
different states can be distinguished, each of which characterised by a how the intensity of turbulent fluctuations
scales with the externally applied forcing. These scalingsimply that in the process of making the flow quasi-two
dimensional, the effect of the magnetic field is to lower Joule dissipation to the point where it actually increases the
intensity of turbulence. These theoretical concepts are verified experimentally on the FLOWCUBE experimental
platform where turbulence is driven in a cubic container by injecting electric current at one of the Hartmann walls
of the vessel. In FLOWCUBE, the intensity of the forcing is measured directly by the quantity of current that is
injected in the flow.

Dimensionality and turbulence intensity

Consider a horizontal channel of widthh, filled with liquid metal (densityρ, viscosityν, electric conductivity
σ) and pervaded by a homogeneous static magnetic fieldBez. Both the tendency to two-dimensionality and the
sources of three-dimensionality of MHD flows can be seen fromthe curl of the Navier-Stokes equation and the cur
l of Ohm’s law within the quasi-static approximation, whichread:

∂zJz = −∇⊥ · J⊥ =
ρ

B
(u · ∇ωz + ω · ∇uz)−

ρν

B
∇2ωz, (1)

∇× J = σB∂zu. (2)

These equations express that horizontal layers of fluid can only be fed by electric current if either inertia or viscous
friction exist there to balance the Lorentz force. Furthermore, any electric current ”leak” pulled into the core
by either of these mechanisms results in the presence of velocity gradients along the magnetic field, and hence
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Figure 1: Schematic representation of generic flow configurations in a channel in an external magnetic field. For
illustration purposes, the flow is driven electrically by injecting electric current at the bottom wall. Hartmann layers
are represented in light grey (a)lz << h (b) lz & h (c) lz >> h.

in three-dimensionality. Conversely, quasi-two-dimensionality is only possible if none of these forces acts, and
∂zu = 0 in the core. Velocity gradients would then still exist in theHartmann layers because of viscous friction,
and accordingly, the entire horizontally divergent electric current flows there. The amount of current available to
flow into horizontal planes is determined by the intensity ofthe forcing driving turbulence (or equivalently, by the
total current directly injected into the flow, if it is electrically driven, as on Fig. 1). The heightlz of the region
where the the forcing current is consumed by this mechanism determines the distance over which the Lorentz
force is able to diffuse momentum. Depending on whether in a structure of sizel⊥ and typical velocityU(l⊥), the
mechanism is predominantly viscous or inertial,lz respectively scales as:

lνz ∼ l2
⊥

h
Ha or l(N)

z ∼ l⊥N
1/2, (3)

whereHa = Bh(ρ/σν)1/2 andN = σB2l⊥/(ρU) are the Hartmann number and interaction parameter. The

scaling forl(N)
z was first proposed by [9] and experimentally verified by [7]. The ratio of the diffusion lengthlz to

the height of the channel determines the dimensionality of the flow, leading to three different cases illustrated on
Fig. 1.
If lz ≪ h, momentum diffusion by the Lorentz force does not reach out to both boundaries of the channel, electric
eddy currents spread overlz ≪ h and the flow is three-dimensional, with regions near one or both channel walls
(depending on the geometry of the forcing) where only a weak,residual flow exists.
If lz ∼ h, structures extend across the whole channel but three-dimensionality persists in the bulk.
If lz ≫ h, the flow is quasi-two dimensional and electric current flowsalmost exclusively in the Hartmann bound-
ary layers.
It is important to notice thatl(N)

z is scale-dependent and so strictly speaking, for a turbulent flow to be quasi-two
dimensional, all scales have to satisfylz(l⊥) ≫ h. Hence, an intermediate state exists where large scales are
quasi-two-dimensional while smaller scales are three-dimensional [9, 4]. The three different regimes of flow di-
mensionality correspond to different electric current paths and therefore different levels of Joule dissipation. We
shall now characterise them through the relation between forcing and the measured Reynolds number. For this, we
start by noticing that the total current induced by the forcing, or directly injected into the flow,I spreads between
the bulk (Ic), and through each of the Hartmann layer (Ib andIt), so thatI = Ic + Ib + It. SinceIc diverges
into the core over the height of the structure,Ic ∼ 2πl⊥max{lz, h}Jc

⊥
. The horizontal current densityJc

⊥
is then

estimated from (1) using only either the first or the second term in the RHS of the equation, depending on whether
viscous effects or inertia dominate, respectively. UsingReb = Ubl⊥/ν andRe0 = (I/2πν

√
ρσ) to express these

scalings non dimensionally (indicesb andt refer to bottom and top plates), it comes that iflz ≫ 1 then the flow is
quasi-two-dimensional[8, 1] and

Reb ∼ Re0. (4)
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Figure 2: Re′bHa
−1/3 andRe′tHa

−1/3 vs. Re0, representing the RMS of velocity fluctuations near the bottom
wall. Solid, dashed-dotted and dashed lines respectively represent scaling laws (4), (5) and (6).

If lz ≪ 1 or lz ∼ 1, the core current is pulled in by inertia [7], and

Reb ∼ Re
3/2
0 . (5)

Furthermore, (4) remains valid for any value oflz/h if the current in the core is pulled by viscous effects. Regimes
where this scaling holds shall therefore be calledinertialess.
While scalings near the bottom wall give a measure of turbulent intensity where it is forced, scalings near the top
wall give a measure of its intensity away from where the forcing is applied. It turns out that iflz ∼ h or lz ≫ h,
then scalings forRet are essentially the same as forReb, albeit for a small correcting factor [7]. Iflz ≪ h, on the
other hand, the top wall is outside of the region where turbulence diffuses under the action of the Lorentz force.
Any residual flow there is viscously entrained by the neighbouring turbulence, and damped by the Lorentz force.
This balance provides a scaling of the form

Ret ∼ Re
1/2
0 , (6)

which characterises the residual flow in this region. All three scalings are observed experimentally to a great
precision, over a wide range of values ofRe0 andHa (see Fig. 2). For the purpose of the experiment,Reb and
Ret were built on the RMS of velocity fluctuations and half of the scale at which energy was injected into the
flow ( materialised by the spacing between current injectionelectrodesLi). For low forcing, the inertialess regime
dominates both near the wall where turbulence is forced and the wall where it isn’t. For high magnetic fields (hence
l
(N)
z (l⊥)/h ≫ 1), a transition takes places to the inertial regime where (5)holds in both regions. At lower fields,

wherel(N)
z (l⊥)/h < 1, this transition is only visible where turbulence is forced. The large scales of turbulence do

not reach the top wall and (6) becomes valid in this region.

Can magnetic fields enhance turbulence ?

An important feature of the measurements of turbulent intensity on Fig. 2 is that the prefactor in all scalings
laws linkingReb to Re0 depends onHa. This wasn’t foreseen in theory and must be attributed to thefact that
while the injected currentI induces an average flow, we diagnosed turbulent fluctuations, which only receive a
fraction of the energy of the average flow. It appears that theratio of the RMS of velocity fluctuations to the
average velocity not only depends onHa but monotonically increases with it. In other words, the relative turbulent
intensityincreases with the magnetic field, in apparent contradiction to the widely accepted idea that the magnetic
field should suppress turbulence !
The paradox can be resolved by considering the energy balance integrated across the channel and observing that
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most of the power injected by the forcingP is dissipated ohmically. Using the expression of the Lorentz force put
forward by [9], ohmic dissipation integrated over the channel is expressed as:

∫ h

0

ǫJdz = −σB2〈
∫ h

0

u ·∆−1∂zzu〉dz ∼ −σB2l2⊥h
[

〈u〉 · ∂2
zz〈u〉+ 〈u′ · ∂2

zzu
′〉
]

,

where brackets and prime respectively refer to average and fluctuating quantities. Approximating the derivatives
as∂2

zz〈u〉 ∼ 〈Ub〉2/l2z and∂2
zzu

′ ∼ 〈U ′

b〉/l′2z , and using (3) with reference velocities〈Ub〉 and〈U ′2
b 〉1/2 to evaluate

respectivelylz andl′z, it comes that:

∫ h

0

ǫJdz ∼ −ρ
h

l⊥
〈Ub〉3

(

1 + α3
)

, (7)

whereα = 〈U ′2
b 〉1/2/〈Ub〉 is the relative intensity of turbulent fluctuations. The total power driving the flow across

the channel is determined by the injected current as:

∫ h

0

PIdz ∼ IB

2πl⊥
〈Ub〉, (8)

and by virtue of (5), equating (8) and (7) forHa >> 1, leads to an estimate forα:

α ∼ l⊥
h
Ha1/3Re

1/6
b . (9)

Experimental data support the scalingHa1/3 and confirm that fluctuations become more intense as the field is
increased. It must be noted that this scaling applies to fully developed turbulence, for whichα & 1. The under-
lying mechanism is that while the magnetic field does suppress turbulence, it does so by elongating structures.
In the process, velocity gradients are reduced, and eddy currents responsible for the ohmic dissipation are sup-
pressed. The resulting structures are closer quasi-two-dimensionality and dissipate much less energy than their
three-dimensional counterpart. As a result, turbulence retains more kinetic energy. In this sense, the application of
a static magnetic field can indeed enhance turbulence.

References

[1] T. Alboussière, V. Uspenski, and R. Moreau (1999), Experimental Thermal and Fluid Science, 20(20):19–
24
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