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Abstract: We present DNS of decaying Magnetohydrodynamic (MHD) turbulence be-
tween two Hartmann walls, at low magnetic Reynolds number and high Hartmann num-
bers, up to 896. It is found that the decay proceeds through two phases: first, energy
and integral lengthscales vary rapidly during a two-dimensionalisation phase extending
over about one Hartmann friction time. Once the large scales are close to quasi-two di-
mensional, the decay results from the competition of a two-dimensional dynamics driven
by dissipation in the Hartmann boundary layers and the three-dimensional dynamics of
smaller scales. In the later stages of the decay, a purely quasi-two dimensional decay dom-
inated by friction in the Hartmann layers is not reached, because of residual dissipation in
the bulk. Also, velocities and transport along the magnetic field are strongly suppressed,
in agreement with experiments of (1).
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1. Introduction When the magnetic field Bez is imposed (in the sense of the
low magnetic Reynolds number approximation ((2)), turbulence evolves as a result of the
competition between inertia and the diffusion of momentum along the direction of the
magnetic field. A structure of size l⊥ becomes elongated over a length lz by this diffu-
sion over a timescale of τJ (lz/l⊥)

2 ((3)), whilst loosing energy through Joule dissipation
(τJ = ρ/(σB2) is the Joule dissipation time, ρ and σ are the fluid density and electric con-
ductivity.). (4) first showed that under this linear phenomenology, the turbulent kinetic
energy decayed at E ∼ (t/τJ)

−1/2 towards an asymptotic state where the flow quantities
did not vary along the magnetic field (in this sense, a two-dimensional state) but where
the kinetic energy of the component along the magnetic field was a third of the total
kinetic energy (for a three-component flow).

When Hartmann walls are present, a strictly two-dimensional state is not possible
because of the very thin Hartmann boundary layers that develop along them (see for
instance (5)). Instead, (3) theorised that in a channel of width L, a structure of size
l⊥ became quasi-two-dimensional after τ2D(l⊥) ∼ τJ(L/l⊥)

2. Past this stage, electric
current in the core became of order Ha−1, the ratio of the boundary layer thickness to
L: dissipation occurs then almost exclusively in the boundary layers where it is equally
viscous and magnetic. In contrast, strictly two-dimensional states are possible when
walls are absent and the Joule dissipation can therefore drop to much lower values. (1)
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also observed experimentally that in the presence of Hartmann walls, transport along the
magnetic field was suppressed in the later stages of the decay, in contrast with the findings
from numerical simulations in periodic domains (6).
Here, to resolve some of these contradiction, we investigate decaying turbulence in a
channel bounded by electrically insulating walls. We focus on the questions questions,
which are currently left open:

1. Does three-dimensionality subsist in the later stages of the decay (t ≫ τ2D(l⊥))?

2. Which part of the energy subsists in the third velocity component ?

3. How do Hartmann walls affect the early phases of the decay (t < τ2D(l⊥)) ?

2. Governing equations

2.1. Problem definition At low Magnetic Reynolds number, the full system of the
induction equation and the Navier-Stokes equations for an incompressible fluid can be
approximated to the first order the Magnetic Reynolds number Rm, which represents the
ratio of the induced magnetic field to the imposed one. Under this approximation, the
Lorentz force expresses as a linear functional of the veloctiy field and the non-dimensional
governing equation take the following form:(2):

∂u

∂t
+ P [(u · ∇)u] = ∆u−

1

Ha2
∆−1∂zzu , (1)

where Ha = LB
√

σ/ρν is the Hartman number, P denotes orthogonal projection onto
the subspace of solenoidal fields, u denotes the fluid velocity, B the externally imposed
magnetic field, ν the kinematic viscosity, and σ the electrical conductivity.
The geometry of the problem is that of a channel flow with a homogeneous transverse
magnetic field Bez and impermeable (u|wall = 0), electrically insulating (j · n|wall = 0)
walls located at z = ±L/2. Periodic boundary conditions of period L are imposed in the
x and y directions.

2.2. Numerical method The problem is solved numerically, using a new type of
spectral method designed to alleviate the computational cost associated with strong
anisotropy and thin Hartmann boundary layers. The main idea is to take advantage
of the fact that such structures are dissipative and that their presence should reduce the
number of degrees of freedom of the flow, when paradoxically, their fine resolution incurs
extra computational cost in most current methods. The mathematical principle is to use
a functional basis with elements that already include these fine structures so as to avoid
these extra costs. The main advantages of this technique are that Hartmann layers are
finely resolved with a limited number of collocation points so in contrast to traditional
methods, the computational cost per time step does not depend on the intensity of the
magnetic field. This makes it possible to simulate flows at much higher magnetic fields
than standard methods (such as spectral methods based on Techbychev polynomials).
Another advantage of this technique is that it can potentially be adapted to a number
of other problems where fine resolution becomes problematic in extreme regimes, as long
as a suitable basis can be found. The mathematical foundations of this method and its
numerical implementation are described in detail in (7; 8), where it is also tested for the
exact channel geometry studied here.
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Figure 1: Instantaneous streamlines for Ha = 112 at t = 0 & t = 100τJ

We use three types of boundary and initial conditions: first, as in (9), the initial condi-
tions consist of a isotropic, random Gaussian velocity field with u(k) ∼ exp [(−k/kp)

2]
where kp = 4π/L. To single out the influence of Hartmann walls, these initial conditions
are either used in conjunction with a 3D periodic domain or adapted to the geometry
described in section 2.1 (referred to as ”walls 3D IC” and ”periodic” thereafter). A third
type of configuration consist of the same geometry with Hartmann walls, but with an
initial flow field that is isotropic in the x − y plane and constant along z, except near
Hartmann walls, where Hartmann layers exist (”walls 2D IC”). The Reynolds number
Re = u′l0/ν is based on the initial integral lengthscale l0 and velocity u′ = u(k = kp) and
is initially set to 336. The Hartmann number spans values between 112 and 896.

3. Results The decay exhibits three- and a two-dimensional phases with an over-
lap (Snapshots from the initial flow and the second phase are shown on figure 1): the for-
mer is dominated by the two-dimensionalisation process, where diffusion by the Lorentz
force stretches vortices until they reach the Hartmann walls. This process is highly dis-
sipative and leads to a rapid variation of energy and of the integral lengthscale along B

(see Fig. 2 (a) and (b)). Larger scales are two-dimensionalised more quickly than smaller
ones. Once the large scales of turbulence are close to two-dimensional (after approxi-
mately τ2D(l0)) the flow starts exhibiting a two-dimensional dynamics, where dissipation
mostly takes place in the Hartmann boundary layers, with a slower characteristic timescale
τH = HaτJ (Fig. 2 (e) and (f)). However since it can take up to τH for small scales to
adopt a two-dimensional dynamics, there is no clear separation between these two phases
and both two and three-dimensional dissipation mechanisms co-exist long after τ2D(l0).
Several important features of this phenomenology stand out:
First, the presence of the walls turns out to impede the growth of lz right from the earliest
stages of the decay, whereas the decay of energy remained roughly in line with (9)’s law
of E ∼ t−1/2 for unbounded turbulence in the limit of high Ha, during around one Joule
time (Fig. 2 (a) and (b)).
Second, the energy associated to the velocity component across the channel is very strongly
suppressed: Ez/E tends to 0 much faster than for unbounded turbulence (Fig. 2 (c)).
This is in line with (1)’s experiments and confirms that walls are responsible for the sup-
pression of the third component. Further evidence of this suppression is visible in the long
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Figure 2: (a) Evolution of normalised kinetic energy, green line: best fit to a law of the form
K(1+β t

τJ
)−0.53 put forward by (9). (b) integral lengthscale, green line, best fit toK(1+β t

τJ
)0.26,

which is similar to ((9)) prediction but with a lower exponent. (c) ratio of kinetic energy in
the z-velocity component to total kinetic energy for Ha = 448. (d) normalised instantaneous
profiles of velocities 〈〉xy and 〈〉xyz respectively denote spatial averaging along x and y directions
only and in the entire domain. (e) ratios of total viscous to total magnetic dissipation and of
dissipations in the Hartmann layer to dissipation in the bulk. (f) Skewness.

term behaviour of the skewness which tends to 0 in the case with walls. With periodic
boundary conditions, by contrast, the skewness remains high and almost constant during
the entire two-dimensionalisation phase, of order τH (Fig 2 (f)). Thirdly, long into the
”two-dimensional phase”, even at the highest value of Ha, a form of three-dimensionality
subsists (Fig. 2 (d)), due to currents recirculating between the Hartmann layers and the
bulk. This effect is characterised by the barrel shape visible on the larger structures, as
predicted by (10). Though less pronounced at higher values of Ha, our simulations show
no evidence of it vanishing at larger times.
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Fourthly, in quasi-two dimensional flows dominated by dissipation in the Hartmann
boundary layers, the total kinetic energy would be expected to decay exponentially with
a timescale of τH . However, a true exponential decay of this sort was never observed, even
for t > τH . Remarkably this discrepancy to a pure exponential decay did not result from
the residual three-dimensionality due to the barrel effect, but mostly from viscous friction
in the horizontal plane. Greater detail of the mechanisms of the decay can be found in
(11).
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