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1 introduction

The aim of the present work is to derive rigorous estimates for turbulent
MHD flow quantities such as the size and anisotropy of the dissipative scales,
as well as the transition between 2d and 3d state. To this end, we calculate
an upper bound for the attractor dimension of the motion equations, which
indicates the number of modes present in the fully developed flow. This
method has already been used successfully to derive such estimates for 2d
and 3d hydrodynamic turbulence , as in [3]. We tackle here the problem of
a periodic flow in the 3 spatial directions, to which a permanent magnetic
field is applied. In addition, the detailed study of the dissipation operator
provides more indications about the structure of the flow.

2 The Navier-Stokes equation as a dynamical sys-
tem

We shall first explain the interest of studying the dynamical system asso-
ciated with the Navier-Stokes equations. The quantity we are mostly in-
terested in is the set of functions which ” attracts” any initial flow, in the
sense of the limit when the time ¢ tends to infinity. Indeed, the dimension
of this so-called global attractor is known to be high for turbulent flows,
but finite under the assumption that the Navier-Stokes equations do not
produce any finite time singularity [3]. Physically, this indicates that an
established homogeneous turbulent flow includes a finite number of vortices,
which therefore cannot be smaller than the ratio of the the volume of the
physical domain by the number of modes, precisely given by the attractor
dimension dg- Evaluating an upper bound is thus a way to derive a lower
bound for the size of the dissipative scales. This will be our purpose from
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now on.

To calculate the attractor dimension of a dynamical system (defined by
an evolution equation of the kind ;%u = F(u)), we consider a solution u
located on the attractor and an arbitrary number N of small independent
disturbances du;/i € {1..N}. Note that ”small” is relative to the norm
defined in the phase space, which is a space of functions in the case of the
Navier-Stokes system. The subset spanned by these N independent vectors
evolves so that it is located within the attractor at infinite time. Therefore,
if N > dgy, the N-dimensional volume of this subset, defined as

Vi (t) = |du; x .. x duy]|

tends to 0 when ¢ tends to infinity. This latter property is expressed by
Constantin and Foias theorem [2].
In the vicinity of the attractor, the evolution operator can be linearised as
F(u) = Au + O(||6u|?) so that the variations of V (t) are exponential:

Vv (t) = Viv(0) exp(t{Tr(An))) (1)

The subscript N stands for projection of operator into N-dimensional sub-
sets of the phase space. If Tr(Ay) is positive for at least one choice of N
disturbances, then N is an upper bound for the attractor’s dimension be-
cause at least one N-volume would expand (see (1)). We shall therefore look
for the maximum trace of the 0 Navier-Stokes equations for any arbitrary
integer N.

In the case of a uniform and permanent magnetic field B aligned with the
z axis, the latter can be 4:

Véu = 0 (2)
J vU .
5t~u = T fie (—a.Véu — 5u.Vu)J+fIa53 x B+ Aég (3)
I(J)éT Dpyéu

where j denotes the electric current. o, p and v are the fluid electrical
conductivity, density and viscosity. The system is completed with periodical
boundary conditions of period L in the 3 directions of space. The square
of the Hartmann number Ha = LB\/;’:V expresses the ratio of the Lorentz

force to viscosity, and Re = UU—L is the Reynolds number.
The total rate of expansion results from the competition between the non
linear terms which tend to expand the initial volume in the phase space, and
viscous and Joule dissipations which tend to contract it.
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Recently, [5] has derived a lower bound for the trace of the operator associ-
ated with the inertial terms in any N-dimensional subset, of the form

Tr(Z(u)) < NRe? (4)

in the case of a periodical flow in the 3 spatial dimensions. In order to
derive an estimate for the attractor dimension in the MHD case, our main
task then consists in finding the minimum of the trace of the dissipation
operator on all N-dimensional subspace, for arbitrary values of N.

3 Properties of the modes minimising the dissipa-
tion

We shall now look for the set of N modes that achieve the minimum dissi-
pation for any value of N and exhibit a few important properties of these
modes. The dissipation operator is compact and self-adjoint, so its trace
expresses as the sum of its eigenvalues. The next step is then to solve the
eigenvalue problem of the dissipation operator and to sort the eigenvalues
in ascending order. The sum of the N first actually achieves the minimum
of the trace over all N-dimensional subset of the phase space. The three
spatial component of the eigenvector appear to be of the form:

U@%@:mmmgmm%mm%@mm@$gaﬁ%¢w@¢&mm
(5)

The eigenvalue associated to the mode (kg, ky, k;) expresses its dissipa-
tion rate and writes:

‘ k2
_ 1.2 2 2
Mgy by, kz) = k2 + kj + k; — Ha o z (6)

kg + k2
The function A(ky, ky, k) is convex so that if Amee is the largest eigen-
value (corresponding to the Nt mode), all modes associated to sialler
eigenvalues are located inside the area delimited by the curve A(ki,k;) =
Amag in the (k1. k;) plane, where ki = \/kZ + kZ, as shown on figure 1 .
The knowledge of the i50-Amgy curve also provides the maximum values of
the modes in the direction of the magnetic field k., and in the orthogonal
direction k., the ratio of which is an indication of the anisotropy of the
small scales.

These particularities can be used to calculate the N first modes and the
associated trace of the dissipation as a function of N and Ha. This can
be done in the general case, using an iterative algorithm implemented on a
computer. The result is shown on figure 2.
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Figure 2: Solid line: numerical calculation. Dotted: Strong field approxi-
mation. The mismatch of the slopes is due to two dimensional state for low
N (left), and to quasi-2d state for low Ha (right)
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The shape of the i80-Amaz 18 determined by the ratio —I;I%g . Intuitively, it
indicates the relative importance of forcing versus dissipation (as a higher
inertia tends to generate more modes, and hence, increase the dimension of
the attractor). We notice that the smaller this number, the more modes are
concentrated outside of the a cone of axis (Oz). This behaviour has been
pointed out both experimentally ([1] and theoretically [4] for real flows, for
which a strong magnetic field is known to confine turbulent modes outside
the Joule cone. For dominating electro-magnetic effects, the Joule cone ex-
tends to the whole space except from the horizontal plane (kz, ky) : the flow
becomes two-dimensional. This also occurs in the eigenvalue problem where
two-dimensional modes appear to be the less dissipative ones. This allows
us to find out whether the set of N eigenmode is purely two-dimensional.

In the case of a Joule cone-shaped (—ﬁ% < 1) distribution of a high number
of modes (N >> 1) . An analytical expression for the trace of the dissi-
pation can be found, by replacing the sum over the N eigenvalues by an

integral.
Te(Dy) < —cHa? N2 (7)

where ¢ is any real constant of little relevance for our purpose. The as-
sociated maximum wavenumbers in the z-direction and in the orthogonal
direction are given by:

1 1
ks = K =cN1Hat (8a)
1 1
k =cN 2Ha 2 (8b)

Zmax
and the flow is two dimensional if and only if N < cHa. The properties of
the eigenmodes of the dissipation operator and those of the real flow exhibit
some striking similarities. We shall exhibit more of them using the full result
on the estimate for the attractor dimension.

4 bounds on turbulent MHD flow quantities

We shall now derive an estimate for the attractor dimension of the Navier-
Stokes equation on a periodical domain. To this end, we add (4) and (7) in
order to get an upper bound for the expansion rate of the Volume of any
N-dimensional subset located in the vicinity of the attractor. We recall that
the attractor dimension is the smallest value of the integer N for which this
expansion rate is negative. The results are plotted on figure 3 in the general
case. In the case N >> 1 and 7‘11%2‘ < 1, equations (8a-8b) yield an analytical
upper bound for the attractor dimension, as well as upper bounds for the
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Figure 3: attractor dimension as a function of Re (left) and Ha (right).
dotted: strong field approximation. solid: numerics.

maximum wavenumbers:

dagt < CR64HQ_1 (9&)
Epmes < che (9b)
koman < cRe?Ha™" (9c)

To estimate the sharpness of these bounds, we shall compare them to the
heuristic results obtained under the usual assumptions of 3d MHD turbu-
lence. Indeed, it is 2 assumed that a balance is established at each scale k
between inertia and Lorentz force. This leads to a power density spectrum
varying as t—3. Now assuming that small scales result from the balance
between viscosity and inertia yields an order of magnitude for the latter:

ko, ~ cRe? (10a)
Kz, ~ cReHa ™ (10b)

The estimates appear to be loose when powers of the Reynolds number
are compared. This is because it is difficult to have a sharp bound for the 3d
inertial terms. However, the exponent of the Hartmann number is the same
in both estimates and heuristic approximations, which stems from the fact
that our estimate for the dissipation is derived from an achieved bound, and
therefore, is the sharpest possible. This suggests that the modes minimising
the dissipation are actually relevant to the real flow. This latter idea is
also supported by the variations of dg with Ha plotted on figure 3 in the
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general case. Indeed, the latter can be split in three zones. For low values
of Ha, the attractor dimension hardly depends on Ha. This corresponds
to a quasi-isotropic flow where electro-magnetic effects are negligible and
for which the dissipation is viscous. For higher values of Ha, the attractor
dimension decreases at a rate corresponding to (9a). In this region, Joule
effect is the main dissipation mechanism, and is provoked by electric current
loops tending to damp velocity differences between planes orthogonal to the
magnetic field. For higher values of Ha, dgy becomes again independent of
Ha. This happens when the damping mechanism involved at more moderate
values of Ha dominates all other effects so that the flow is two-dimensional.
Joule dissipation then disappears and in the absence of walls surrounding the
fluid domain, the only remaining dissipation mechanism is viscous friction
between column-like vortices, of rotation axis aligned with the magnetic
field.

5 conclusion

Though they are not solution of the motion equations, the eigenmodes of
the dissipation operator exhibit some strong similarities with what is known
from the real flow. As these properties are derived under the only assumption
that the solutions of the Navier-Stoles equations are regular, this gives some
strong support to the assumptions on which former heuristic results rely.
However, the estimates obtained might be improved if the estimate for the
inertial terms is improved. Also, more physical behaviour such as boundary
layer velocity profiles could be recovered by performing some similar study
with classical wall boundary conditions on the planes orthogonal to the
magnetic field.
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