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Abstract: The present paper performed a theoretical study of acoustic streaming. The 

approach is based on the time scale separation method where the streaming jet is considered 

varying very slowly in time compared to the acoustic period. An acoustical force is introduced 

in the Navier-Stokes equations and ensures the coupling between sound propagation and 

hydrodynamics. Dimensional analysis is used to give first clues for the theory of physical 

modeling. Through scaling analysis, two scaling laws featuring linear and square root 

variations of the streaming velocity level with the acoustic power have been found. 

 

1.  Introduction 

 

“Not only motion can create sound but also sound can create motion” [1]. This sentence by 

Sir J. Lighthill explains in a few words what acoustic streaming is: the possibility of driving 

stationary and quasi-stationary flows using acoustic waves. This phenomenon can be present 

in many applications ranging from biomedical applications (low intensity ultrasounds based 

diagnostics and high intensity ultrasounds based treatment) to engineering applications 

(sonochemisty, velocimetry and potentially crystal growth). 

Acoustic streaming is often presented as a second order flow with respect to acoustic as 

explained by Nyborg [2] on the basis of a small perturbation approach. However, this method 

seems to be limited because of two reasons. Firstly, assuming streaming velocity of second 

order leads to a motion equation featuring an acoustical force, pressure gradient and viscosity 

terms but negligible inertial terms since these are of fourth order. Secondly, in several 

experimental observations [3, 5], acoustic streaming velocities is not of second order with 

respect to the acoustic velocity wave propagation. Lighthill [1] suggested thus that this 

development is suitable for creeping motion which he characterizes with a Reynolds number 

less than one; for the other Reynolds number, he proposed to introduce inertial terms 

artificially. 

Here, a new approach is proposed. First, we developed a scale separation method as an 

alternative to Nyborg's approach. Then, we focused to a dimensional analysis in order to 

consider an application to liquid metals. Finally, a scaling analysis of acoustic streaming jet 

provides flow velocity evolution as a function of the governing parameters of the problem.  

 

2.  Time scale separation method 

  

 Each variable (velocity, density and pressure) of the acoustic streaming problem is 

split into an acoustic part, varying rapidly, and a streaming motion part, varying very slowly 

compared to the acoustic part: it's the time scale separation method. Introducing these 

variables into the incompressible Navier-Stokes equation and averaging over an acoustic 

period, like RANS computation, we find:  
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where      represents the flow velocity,      , the acoustic wave velocity, pe, the hydrodynamic 

pressure and  the fluid density. The additional volumetric force term      in the 

incompressible Navier-Stokes equations ensures a coupling between the acoustic propagation 

and the hydrodynamic flow. This acoustic streaming force must be computed from the spatial 

variations in acoustic field, which are an output of the acoustic propagation problem. A 

commonly accepted expression, valid under the plane wave approximation, is: 

 

where Iac is the acoustic intensity. Through this expression is not new [2], the time scale 

separation approach allows it to appear naturally in the full incompressible Navier-Stokes 

equations, which is consistent with experimental observations [3, 5] 

 

3.  Dimensional analysis 

  

 Since the pioneering work done by Eckart [6], a classical modeling approach is to 

consider acoustic streaming as the weak coupling between two sub-problems: acoustic 

propagation and the hydrodynamic flow. The first sub-problem, the acoustic propagation, 

consists in the description of the acoustic beam; in the framework of linear acoustics, the 

inputs for this problem are the ultrasounds source diameter ds, frequency f, and power Pac, and 

the liquid acoustic properties, i.e. sound celerity c, and acoustic attenuation coefficient α. The 

hydrodynamics sub-problem consists in the description of the quasi-steady flow driven by 

acoustic streaming; the inputs for this problem are the geometry of the fluid domain and the 

liquid mechanical properties, namely its kinematic viscosity , and density . Ten 

dimensional variables are thus used; they are listed in table 1 with their corresponding usual 

units. The Vashy-Buckingham theorem implies that a set of seven dimensionless groups are 

necessary to describe the whole problem of acoustic streaming. We chose to define ds, /ds
2
 

and /ds
3
 as characteristic distance, time and weight, respectively; this leads to the 

dimensionless groups listed in the last column of table 1.      

 

Dimensional variable Usual units Fundamental units 
Corresponding 

dimensionless groups 
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Table 1: Variables of the acoustic streaming problem, their units and the corresponding 

dimensionless groups. 
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Each dimensionless parameter can be associated to a physical interpretation: N is a ratio 

between the length of the domain L and the typical attenuation distance 1/α, F is the 

dimensionless frequency and can be seen as a ratio of the period and the characteristic time 

for viscous diffusion of momentum at the scale ds, S is typically the half angle of the 

diffraction cone of the sound beam, L and l are simply the ratios of the cavity length and 

width to the source diameter, P is the injected acoustic power normalized by a typical power 

dissipated by viscous effects and U, the dimensionless velocity, is a local Reynolds number 

based on the observed velocity and the source diameter.    

 

4.  Toward the case of liquid metal 

 

One of the difficulties when dealing with acoustic streaming in liquid metals is that the 

acoustic attenuation coefficient is not a very well-known property for this type of liquids. The 

acoustic attenuation coefficient in a liquid, α, is very often assumed to have three 

contributions. A first contribution is connected with the dynamical (or shear) viscosity , a 

second contribution is related to the bulk viscosity η, and a final contribution takes into 

account thermal effects. The expression proposed by Nash et al. [7] is: 
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where f is the frequency,  is the density, c is the wave velocity, β is the thermal expansion 

coefficient,  is the thermal conductivity, Cp is the specific heat, and T is the absolute 

temperature. The dynamical viscosity  and the properties involved in the thermal 

contribution can generally be obtained for standard liquids with an acceptable accuracy, so 

that the main difficulty will come from the estimation of the bulk viscosity η. 

We rely on this estimate of the attenuation coefficient, on the developed dimensional analysis 

and physical modeling techniques to assess the intensity of acoustic streaming expected in a 

liquid metal experiment. In particular, we consider the similarity of a hypothetic liquid metal 

set-up with our existing set-up [8]. We find that, under some assumptions, the similarity 

condition imposes the scale Σ, the ratio in frequency f, attenuation factor N and acoustic 

power P between the water-test and the liquid metal experiment. Under this condition the 

ratio in velocity observed in these apparatus is also given. Focusing on the case of liquid 

silicon and liquid sodium, featuring respectively a very high and a very low melting 

temperature, the similarity conditions is given in table 2. 

 

 Scale                                                                    

Silicon  

(1 750 K) 
8.2 0.046 0.17 8.9 0.38 

Sodium  

(393 K) 
2.5 0.23 0.28 4.9 0.59 

Table 2: Similarity conditions for a model experiment in water (subscript test) and a 

liquid metal experiment (subscript real). The case of silicon is considered in the first line, 

that of sodium in the second line. 

 

Considering our set up as test experiment, the second line of table 2 shows that, in liquid 

sodium, a plane transducer of diameter 12 mm operating at 8.6 MHz would induce velocities 

on the order of 1.7 cm/s with an acoustic power of only 200 mW. Because of the scale Σ, we 

can also say that these velocities would be obtained after a smaller distance from the acoustic 

source. As mentioned earlier, this numerical application makes us think that it should be taken 



 

care of acoustic streaming side-effects when measuring small velocities by in ADV in liquid 

metals. 

 

5.  Scale analysis 

 

 We proposed in a recent paper [8] two scaling laws for acoustic streaming free jets, i.e. 

steady, laminar, acoustic streaming jets in a semi-infinite medium. As no confinement is 

considered and there is no reason for the jet to feature any significant curvature, the pressure 

gradient can safely be assumed not to play any significant role. The flow is thus governed by 

a balance between the combined effects of viscosity, inertia and the acoustic streaming force. 

We focus successively on the two asymptotic cases of negligible viscous effects and 

negligible inertia effects. Let us first consider the acceleration zone near the origin of the jet. 

We assume this region to be dominated by inertia effects, which balance the acoustic 

streaming force. the typical velocity ue at a distance (x-x0) from the origin of the jet is then 

expected to follow the following scaling law: 

 

       
  

  

   

    
 
       (4)  

 

where 1 is a multiplicative factor of the order of 1.  

Farther from the origin, we consider that the flow is nearly one-dimensional and ruled by the 

balance between the acoustic force and the viscous forces; 

 

      
    
   

 (5)  

 

where 2 is a multiplicative factor of the order of 1. These two scaling are plotted in figure 1 

with experimental data of Mitome [4], Frenkel et al. [5], Nowicki et al. [3] and Kamakura et 

al. [9] and for the present study. We see that the set of experimental data is in reasonable 

agreement with the proposed scaling laws and that both scaling laws are observed. 

 

6.  Conclusion  

 

 Acoustic streaming is a coupling between an acoustic propagation and an 

incompressible flow ensured by an acoustical force term (eq. (2)) in the Navier-Stokes 

equation. A time scale separation method was developed to derive this force expression. It 

consists in separating the short time scale of the acoustic propagation from the long time scale 

of the hydrodynamic flow. The same acoustical force expression than Nyborg was obtained, 

but our approach is more consistent with experimental observations: flow velocity is not of 

second order with respect to the acoustic velocity. Moreover, equations of motions thus 

naturally feature inertial terms. Ten dimensional variables are present in the acoustic 

streaming problem. Following this, seven dimensionless parameters are proposed to describe 

the whole acoustic streaming problem and make similarities with experimental set up with 

other liquid. In particular, it was found that flow velocity reached in Silicon and Sodium are 

respectively 2.5 and 1.5 times higher with an acoustic power 9 and 5 times lower. Finally, two 

velocity scaling laws are obtained for the streaming flow and plots of experimental 

measurements of the present work and former studies show the reliability of the scaling 

analysis in the range of parameters.  

          



 

 
(a) 

 
(b) 

Figure 1: Comparison of the former and present experimental results with the scaling law given by 

(a) equation (4) and (b) equation (5). 
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