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We investigate numerically the incompressible Navier-Stokes equations under an externally imposed magnetic field. The
results obtained for the simplified geometry of a three dimensional periodic box and show a lower computational complexity
and stronger relationship between the physical reality and its numerical representation.

1 Problem formulation

We consider the case of a space periodic flow in a 3D cubic box Ω of size L under imposed homogeneous and steady magnetic
field B = B0 ·ez . In the frame of the low-Rm approximation, the governing equations can be reduced to a single one involving
the velocity u and pressure p only (see [3] and [4]). Using a reference velocity U and characteristic length Lref we shall write
it in a non dimensional form as

∂

∂t
u(x, t) + (u · ∇)u + ∇p =

1

Re
(∇2

u − Ha2∇−2 ∂2
u

∂z2
) + f(x, t),

∇ · u = 0,

(1)

where following notations are used Ha = LrefB0

√
σ
ρν is the Hartmann number and Re = ULref

ν is the Reynolds number,

u(x, t) = (u(x, t), v(x, t), w(x, t)) is the velocity-vector of the flow, f(x, t) is the external forcing, x = (x, y, x) is the spatial
variable, t is the time, ρ is the density, p is the pressure, ν is the viscosity, σ is the electrical conductivity, B0 is the imposed
magnetic field. Periodic boundary conditions and zero initial condition u(x, 0) = 0 completely determine the problem.

We present numerical simulation results using pseudo-spectral method based on a decomposition of velocity u over the
orthonormal basis of eigenfunctions vk of the linear operator DHa = ∇2−Ha2∇−2 ∂2

∂z2 of the problem (1). These eigenfunc-
tions are a subset of the Fourier modes space used in the standard DNS schemes (see [5]). The aim is to show that properly
chosen subset of least dissipative modes reduces the costs of the numerical simulations without loosing precision. It makes
sense to consider eigenvalues λk which represents the rate of dissipation of mode k

λk = λ(kx,ky,kz) = −(k2
x + k2

y + k2
z) − Ha2 k2

z

k2
x + k2

y + k2
z

. (2)

Since λk < 0, λk can be arranged by growing dissipation so the spectral decomposition of u can be written as u =∑
λk<λmax

cλk
vλk

, where λmax defines the maximum resolution required to resolve the flow completely. This yields a natu-

ral spectral parameter λk that already incorporates anisotropy. In the case of Ha = 0, |λk|
1/2 reduces to ||k|| which is the

usual spectral parameter in non-MHD isotropic turbulence. As mentioned by [2], the set of least dissipative eigenmodes of
DHa required to describe the flow exhibit the rate of anisotropy expected for such flow previous heuristic consideration. In
short, one could see λk as an anisotropic generalization of the usual k-sequence.

2 Numerical results

For the simulations, we set the following constant values L = 0.1 m, ν = 3.4 ·10−7 m2/s, ρ = 6.4 ·103 kg/m3, σ = 3.46 ·106

Ω−1m−1, B0 = 0.02 T and flow is forced in the following way. A constant forcing is applied to Fourier modes with wave
numbers kf = (6, 6, 0), (7, 7, 0), (9, 9, 0)
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that tends to generate a 2D flow. Since the numerical algorithm would not otherwise allow the solution of the problem to be
3D, we add a small constant excitation εf0 in the circles ||k − kf || < 2, with ε ∼ 10−3. Several simulations were done with
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different numerical resolutions nx × ny × nz and force amplitudes f0. Figure 1 shows the time-averaged energy distributions

of the 3D anisotropic MHD flow in the (k⊥, kz)-plane (here k⊥ =
√

k2
x + k2

y) for fixed f0 = 0.0022. The first picture

corresponds to the Re = 153 and highest resolution 128 × 128 × 128 which is necessary to resolve the flow according to
the Kolmogorov length scale kmax = Re3/4 ≈ 45. The second picture is done with the same 1283 resolution but all the
modes vk which correspond to the |λk| > 68 are set to be zero. And the last one shows the energy of the flow resolved
with 643 and cutoff for λk ≤ 32. Thus, the last run uses as much as 8 times less modes as the first classical run. The first

λmax = 68

λmax = 32

Fig. 1 Logarithmical energy distribution in the (k⊥, kz)-plane. Darker dots correspond to low energy modes. Left : Traditional spectral
resolution involves 1283 modes. Centre : resolution is 1283 and cut-off for |λ| ≤ 68 and Right : resolution is 643 and cut-off for |λ| ≤ 32.

picture on Figure 2 shows the energy λ-spectrum E(λ). One can see that spectra obtained in all three runs are very close
(the same can be observed on the dissipation spectra). This shows that a cut off of the type |λk| < |λmax| achieves a good
enough precision, even though the Kolmogorov scale do not resolved. Indeed, [2] suggested that the latter should be replaced
by kmax

⊥
= C1Re1/2 and kmax

z = C2
Re
Ha . We arbitrarily choose λmax so that the energy contained in the |λk| < |λmax|

modes represents 97% of the total energy. Next, in order to define λmax we have done simulation for different values of f0.
The picture in the centre of Figure 2 shows the summation of dissipation energy in the dependency of λ. The black points in
the curve are associated with λmax and mean the 97%-level of the total energy. As can be seen in Figure 2 on the right, the
corresponding values of λmax are growing as ∼ G1/3, where G is the Grashof number. It appears that even for the low values
of Re considered here, C1 and C2 remain almost constants and equal to 10 and 5 respectively, which confirms and quantifies
the scaling from [2] and [1]. For further parametric study more points should be considered, in particular at higher Re and at
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Fig. 2 Left: the energy spectra, solid line corresponds to 1283 resolution, dashed line is 1283 and cut off for λmax = 68; dash-doted line
is 643 and λmax = 68. Centre: Summation of the dissipation energy. Right the Grashof dependence for λmax.

different magnetic fields B0 in order to test scaling laws. But it can be already concluded now, that Kolmogorov scaling laws
are very often pessimistic and much higher then necessary. The above presented λ-cutoff and corresponding λ-estimate can
be considered as more realistic estimate of the number of modes required to resolve MHD turbulence completely.

References

[1] A. Alemany, R. Moreau, P. Sulem and U. Frish, J. Mec., 18, 277–313 (1979).
[2] A. Potherat and T. Alboussiere, Phys. Fluids, 15, 3170–3180 (2003).
[3] P.H. Roberts, Introduction to Magnetohydrodynamics (Longsmans, London, 1967).
[4] J. Sommeria and R. Moreau, J. Fluid Mech., 118, 507–518 (1982).
[5] O. Zikanov, P. Davidson and B. Knaepen, Anisotropy of MHD turbulence at low magnetic Reynolds number( American Physical

Society, 58th Annual Meeting of the Division of Fluid Dynamics, 2005).

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

GAMM Sections 4140012


