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 Abstract: We investigate numerically the non-linear equations of quasi-static 

magnetohydrodynamics (MHD) forced turbulence. The presented numerical approach is 
new compared to the existing classical approaches to turbulence. The results obtained for 
the simplified geometry of a three dimensional periodic box and show a lower 
computational complexity and stronger relationship between the physical reality and its 
numerical representation. This allows us to obtain new information on the flow's structure 
and size of the smallest scales. 

 
1  Introduction 
 
            All type of spectral methods assume the existence of a series of orthogonal 
functions, in the sense that the function u , which defines the model, can be expanded in 
to the orthogonal functions series of the form  

 = ,i i
i

u c u∑               (1) 

where iu  form a basis of the corresponding functional space and ic  are time dependent 
coefficients. It means that depending on the problem, a different type of decomposition 
can be used for Direct Numerical Simulation (DNS). Fourier series and Chebyshev 
polynomials are widely used for this purpose. The main advantage of these bases lies in 
their simple numerical implementation, for instance for integrating or differentiating. 
Also, it allows us to construct a general algorithm to solve a wide variety of problems in 
the same way. However, these sets of functions don't take into account the physical 
properties of the system under consideration directly. This may result into an excessive 
number of functions needed to determine a solution. As a consequence, availability of 
high-speed processors and computing power is the crucial factor for numerical 
implementation. Another possible way is to obtain the basis directly from the problem. 

 
2  Problem formulation 

 
          We consider the case of a spatially periodic, incompressible, conducting fluid in a 
3 D  cubic box Ω  of size b= oxL L  under imposed homogeneous and steady magnetic 
field 0B  aligned with the vertical direction ze . In the frame of the low- Rm  



 394

approximation, so the governing equations can be reduced to a single one involving the 
velocity and pressure only (see [3] and [4]). Using a reference velocity U  and 
characteristic length refL  we shall write it in a non dimensional form as  
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 where following notations are used r 0H = efa L B σ
ρν

 is the Hartmann number and 
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2= || ||
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 is the Grashof number ( d  is number of spatial dimensions). rR = efUL
e

ν
 

is the Reynolds number, ( , )u x t  is the velocity-vector of the flow, ( , )f x t  is the external 
forcing, = ( , , )x x y x  is the spatial variable, t  is time, ρ  is the density, p  is the pressure, 
ν  is the viscosity, σ  is the electrical conductivity, 0B  is the imposed magnetic field. 
Additionally, we will use another non-dimensional parameter Reynolds number 

i= ntULRe
ν

 based on integral length scale intL  (see [5]). The addition of periodic 

boundary conditions and zero initial condition ( ,0) = 0u x  completely determine the 
problem. 

We present numerical study using pseudo-spectral method based on a 
decomposition of the velocity u  over the orthonormal basis of the eigenfunctions kv  of 

the linear operator 
2

2 2 2
2= HHaD a

z
− ∂

∇ − ∇
∂

, which corresponds to the linear part of the 

problem (2). These eigenfunctions are in a subset of the Fourier space used in the 
standard DNS schemes (see [5]). The aim is to show that properly chosen subset of least 
dissipative modes reduces the costs of the numerical simulations without loosing 
precision. It makes sense to consider eigenvalues kλ  which represents the rate of 
dissipation of mode k   

2
2 2 2 2
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 Since < 0kλ , kλ  can be arranged by growing dissipation so the spectral 
decomposition of u  can be written as 

m
=

< k kax
k

u c vλ λ
λ λ

∑ , where maxλ  defines the 

maximum resolution required to resolve the flow completely. This yields a natural 
spectral parameter kλ  that already incorporates anisotropy. In the case of = 0Ha , 1/2| |kλ  
reduces to || ||k  which is the usual spectral parameter in non-MHD isotropic turbulence. 
As mentioned by [2], the set of least dissipative eigenmodes of HaD  required to describe 
the flow exhibits the rate of anisotropy expected for such flow from previous heuristic 
consideration. In short, one could see kλ  as an anisotropic generalization of the usual k -
sequence. 
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3  Numerical results 
 

  For the simulations, we set the following constant values = 0.1L  m, 
7= 3.4 10ν −⋅  m 2 /s, 3= 6.4 10ρ ⋅  kg/m 3 , 6= 3.46 10σ ⋅  1−Ω m 1− , 0 = 0.02B  T and the flow 

is forced in the following way: a constant forcing is applied to Fourier modes with wave 
numbers = (6,6,0), (7,7,0)fk  and (9,9,0)   

2
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0 2

2 2 2 2( , ) = (sin( ) cos( ) cos( )sin( ) ),ef
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k f

L
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L L L L
π π π π

ν
+∑     (4) 

where 0f  is the force amplitude. Such a choice of the force tends to generate a 2D flow. 
Since the numerical algorithm would not otherwise allow the solution of the problem to 
be 3D at all, we add a small constant excitation 0fε  inside the disks || ||< 2fk k− , with 

310ε −: . There are several reasons for this choice: first, the forcing has to be a 
combination of the set of modes used for the expansion. A z -independent forcing can be 
used to simulate both 2D and 3D flows. The second reason is that this type of constant 
2D forcing strongly resembles that obtained in liquid metal experiments by injecting 
electric current though metallic electrodes embedded in insulating walls. 

Several simulations were done with different numerical resolutions x y zn n n× ×  
and Grashof numbers G . Figure 1 shows the time-averaged energy distributions of the 
3D anisotropic MHD flow in the ( , )zk k⊥ -plane (here 2 2= x yk k k⊥ + ) for fixed 

= 27193G  ( = 92Re ). The first picture corresponds to the = 92Re  and highest 
resolution 128 128 128× ×  which is necessary to resolve the flow according to the 
Kolmogorov length scale 3/4

max = 1.5 45k Re ≈ . The second picture is done with the same 
3128  resolution but all the modes kv  which correspond to the | |> 68kλ  are set to be zero. 

And the last one shows the energy of the flow resolved with 364  and cutoff for 32kλ ≤ . 
Thus, the last run uses as much as 8 times less modes as the first classical run. 

      
 
Figure 1:  Logarithmical energy distribution in the ( , )zk k⊥ -plane. Darker dots correspond 
to low energy modes.  Left : Traditional spectral resolution involves 3128  modes.  Centre 
: resolution is 3128  and all the modes kv  which correspond to the 1/2| | > 68kλ  are set to 
zero (cut-off for 1/2| | 68λ ≤ ) and  Right : resolution is 364  and cut-off for 1/2| | 32λ ≤ .   

  



 396

The first picture on Figure 2 shows the energy λ -spectrum ( )E λ . One can see 
that spectra obtained in all three runs are very close (the same can be observed on the 
dissipation spectra). This shows that a cut off of the type m| |<| |ax

kλ λ  achieves a good 
enough precision, even though the Kolmogorov scale is not resolved. Indeed, [2] 

suggested that the latter should be replaced by m 1/2
1=axk C Re⊥  and m

2=ax
z

Rek C
Ha

. Then, in 

order to define maxλ  we have done simulation for different Grashof numbers G  (or Re ). 
The picture in the centre of Figure 2 shows the the summation of the total energy ( )E λ  
in the dependency of λ . The presence of a plateau on the right hand side of the graph 
confirms that the flows are over-resolved, as it indicates that modes corresponding to 
these values of λ  carry almost no energy nor produce any dissipation. We arbitrarily 
choose maxλ  so that the energy contained in the m| |<| |ax

kλ λ  modes represents 97%, 90% 
and 80% of the total energy, respectively. As can be seen in Figure 2 on the right, in all 
cases the corresponding values of maxλ  are growing as 1/4G: . It appears that even for 
the low values of Re  considered here, 1C  and 2C  remain almost constants and equal to 1 
and 3/2  respectively, whichconfirms and quantifies the scaling from [2] and [3].  
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Figure 2:    Left: the energy spectra in λ -shells, solid line corresponds to 3128  resolution, 
dashed line is 3128  and cut off for m = 68axλ ; dash-doted line is 364  and m = 68axλ .  
Centre: Summation of the energy for the different values of G . Symbols on the curves 
are associated with the value of maxλ  and mean the 97%  of the total energy.  Right 
Grashof dependencies for m 1/2| |axλ . Dotted, dashed and dashed-dotted lines present the 
different values of ( )Eα λ , namely 80% , 90%  and 97%  of the total energy respectively.    

  
4 Conclusion 
 

 For further parametric study more points should be considered, in particular at 
higher Re  and at different magnetic fields 0B  in order to refine the scaling laws for 

maxλ . But it can be already concluded now, that Kolmogorov scaling laws are very often 
pessimistic and much higher then necessary. The above presented λ -cutoff and 
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corresponding λ -estimate can be considered as more realistic estimate for the number of 
modes required to resolve MHD turbulence completely. 
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