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ABSTRACT
The underlying flow mechanisms for the destabilisation of an elec-
trically conducting fluid under the influence of a transverse mag-
netic field in a square duct are investigated. Such flows are ap-
plicable to metallurgical processes where magnetic fields are used
to dampen disturbances to increase homogeneity in material pro-
duction, in addition to cooling blankets of nuclear fusion reactors,
where flow disturbances can aid in improving convective heat trans-
fer. A preliminary investigation into optimal linear growths at Hart-
mann numbers 10 ≤ Ha ≤ 1000 and Reynolds number Re = 5000
identifies two regimes for the scaling of optimal linear growths;
when perturbation structures are dominated by three-dimensional
variation in the vertical side-wall boundary layers, and for when
quasi-two-dimensional (Q2D) disturbances are prevalent. Through
comparison with existing literature, the Q2D model of Sommeria
& Moreau (1982) is shown to be an excellent predictor of funda-
mental growth mechanisms for Ha > 150. A two-step method in-
corporating the seeding of an unperturbed base flow with optimal
linear perturbations in a high magnetic field strength regime shows
that no increase in energy amplification can be achieved via initial
seeding energies in the range 10−6 ≤ Ep ≤ 10−2. The dominant
dissipative mechanisms for these different seeding energies are also
analysed, where it is shown that strong magnetic damping does not
always necessitate the smoothing of the velocity field towards pure
anisotropy, which has potentially useful applications for aiding con-
vective heat transfer in magnetically damped flows.

Keywords: CFD, transient linear growth, magnetohydrodynam-
ics, liquid metal, fusion reactor, metallurgy.

NOMENCLATURE

Greek Symbols
δ Boundary layer thickness
ε Viscous dissipation
µ Magnetic dissipation
ν Kinematic viscosity
Ω Spatial domain
φ Electric scalar potential
ρ Mass density
σ Electrical conductivity
τ Time period
ξ Shape function Li spatial coordinate

Latin Symbols

A State-transition operator
a Duct width
BBB000 Magnetic field vector
B0 Magnetic field magnitude
Cd Viscous drag coefficient
E Kinetic energy
G Perturbation energy amplification
G Anisotropy coefficient
Ha Hartmann number
jjj Electric current density vector
kkk Wavenumber vector
k Streamwise wavenumber.
L Linear time evolution operator.
Li Lagrangian polynomial shape function.
Lz Periodicity duct length
L2 Vector space
m Fourier mode
Np Shape funtion polynomial order
p Pressure
Re Reynolds number
Rem Magnetic Reynolds number
t Time
U0 Peak base flow streamwise velocity
u x-velocity component of VVV
VVV Velocity vector
v y-velocity component of VVV
w z-velocity component of VVV
x Cartesian coordinate (spanwise direction)
y Cartesian coordinate (spanwise direction)
z Cartesian coordinate (streamwise direction)

Sub/superscripts
g Nodal index
Ha Hartmann layer
i Nodal index
m Fourier coefficient
max Global maximum
n Non-linear solution
opt Optimal value at global maximum
p Perturbation field
Sh Shercliff layer
0 Base flow
ˆ Fourier transform
′ Linear perturbation
∗ Adjoint
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INTRODUCTION

Electrically conducting fluids under the influence of strong
magnetic fields come under the class of magnetohydrody-
namic (MHD) flows. Understanding the stability mecha-
nisms of such flows has potentially significant implications to
metallurgical processes, and more pertinently the viability of
clean energy sources, such as magnetic confinement fusion
reactors. For the latter, the strong transverse magnetic fields
that exist to contain the plasma have a strong damping effect
on the flow differentials in the adjacent liquid metal cool-
ing blankets. In these flows, motion-derived electric currents
interact with an externally applied magnetic field to induce
electro-magnetic forces known as Lorentz forces (Hunt and
Stewartson, 1965). The Lorentz force acts to suppress ve-
locity differentials in perpendicular planes, while flow struc-
tures also become elongated and aligned with the external
magnetic field vector (Sommeria and Moreau, 1982; Som-
meria, 1988). Furthermore, boundary layers develop along
walls aligned with the magnetic field (called Shercliff layers)
and orthogonal to it (Hartmann layers). Both become thinner
at higher magnetic fields, as their thicknesses respectively
scale as δSh = O(Ha−1/2) and δHa = O(Ha−1). Here, Ha is
the Hartmann number describing the ratio of electromagnetic
to viscous forces in the flow and is a function of the geometry
and material properties of the fluid.

A resulting effect of these flow modulations is inefficient
convective heat transport; a detriment to the thermal perfor-
mance in maintaining safe operating temperatures of the re-
actor, and in the heat exchange process used in the production
of electrical energy. To overcome these issues, several works
have been conducted with the aim of mechanically enhanc-
ing the convective heat transfer performance (Cassells et al.,
2016; Hamid et al., 2016). While these methods certainly
hold an important place in furthering our current understand-
ing, as well as our ability to meet the viability constraints of
fusion reactors, they are not always practicable. Thus, a fur-
ther understanding of the underlying instability mechanisms
which can aid in convection across a broader range of opera-
tional parameters is needed.

An issue with respect to studying the stability of MHD flows
in the limit of strong magnetic fields is the discrepancy be-
tween the critical regime parameters predicted through the
growth of exponentially growing perturbations and that ob-
served in experiments. For example, it has been shown
that the Hartmann boundary layers become linearly unsta-
ble for Re/Ha ≥ 48311, whereas experimental observations
show transition occurring for Re/Ha ≥ 380 (Takashima,
1996; Moresco and Alboussiere, 2004; Krasnov et al., 2004,
2010). One explanation is that the non-normality of the Orr–
Sommerfeld modes can create transient amplifications lead-
ing to a subcritical instability. In other words, the linearisa-
tion around a base state may predict asymptotically decay-
ing eigenvalues, yet, interactions between suboptimal modes
could result in sufficient non-linear transient amplifications
to render the base flow unstable (Náraigh, 2015). The initial
conditions that undergo the maximum growth in kinetic en-
ergy are commonly referred to as the optimal perturbations
or modes.

The three-dimensional nature of MHD flows and the re-
duction in boundary layer thickness (relative to hydrody-
namic flows) means that numerically such analysis comes
at a large computational cost. Quasi-two-dimensional (Q2D)
numerical models for approximating these flows at high mag-

netic field strengths are often utilised by assuming the flow
outside of laminar Hartmann boundary layers are predomi-
nantly two dimensional. First developed by Sommeria and
Moreau (1982) (hereafter SM82), this model has proved
promising from a kinematic standpoint for when both the
Hartmann number and the interaction parameter, defined as
N = Ha2/Re, are much greater than unity, where Re is the
Reynolds number representing the ratio of inertial to viscous
forces in the flow (Sommeria and Moreau, 1982; Pothérat
et al., 2000; Hamid et al., 2015; Cassells et al., 2016).

Pothérat (2007) studied the effects of the Shercliff layers on
the stability of confined MHD flows using the SM82 model.
In this framework, the three-dimensional component of the
wavenumber and MHD equivalent Orr–Sommerfeld modes
was assumed zero, an assumption expected to become valid
when Ha > 200. It was further assumed that only the MHD
equivalent of the Orr–Sommerfeld modes were available to
contribute to non-modal growths. However, the validity of
these Q2D approximations on resolving the all-important sta-
bility characteristics in three-dimensional MHD flows has
been the focus of little to no empirical research. To the best
of the authors knowledge, the only methodologically com-
parable research to that presented in the present work is by
Krasnov et al. (2010), who employed 3D transient growth
analysis to show a scaling of global dominant modes follow-
ing a Ha−3/2 relation in the limited range of 10 ≤ Ha ≤ 50
for Re = 5000 in square ducts.

The presence and structure of these optimal modes have been
shown to form a fundamental part in the processes lead-
ing to flow destabilisation and subsequently the transition of
fully turbulent flows (Boeck et al., 2008). From an industrial
standpoint, effective flow control strategies, such as periodic
suppression and/or excitation of electro-magnetic fields, can
be implemented to promote or discourage flow destabilisa-
tion by utilising the knowledge of the modal and spatial char-
acteristics of these linear growth mechanisms. Potential end
uses being the destabilisation of liquid metal cooling blankets
to aid convective heat transfer coefficients in nuclear fusion
reactors, or the promotion of flow stability to aid in homo-
geneity of material production in metallurgical applications
(Smolentsev et al., 2012).

Motivated by an investigation into the stability of Hartmann
layers by Krasnov et al. (2004), a two-step method incor-
porating the seeding of a basic flow in a three-dimensional
MHD duct with the optimal disturbance modes will also be
investigated in the present work. For Hartmann flows, this
method has shown a strong correlation in relation to the types
of flow structures which appear during transition and onset
of turbulence in full-3D-DNS seeded with small-amplitude
random noise and experimental works with varying surface
roughness (Krasnov et al., 2004; Moresco and Alboussiere,
2004).

To date, it is not properly understood if Q2D models are ac-
curate predictors of the dominant disturbance mechanisms
towards high magnetic field strengths, nor is there an exten-
sive body of work on the physical structures which develop
through their transition to a Q2D-dominated state. There-
fore, the present work aims to address this gap in knowledge
by elucidating the processes for when and how specific lin-
ear transient amplifications present over a wide range of Ha,
and the processes through which the 3D states at low mag-
netic field strengths give way to anisotropic 2D structures
at higher field strengths. Furthermore, as the energetic re-
sponse of seeding fully confined 3D MHD flows with opti-
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Figure 1: Schematic depicting the flow configuration and parame-
ters pertaining to this investigation.

mal perturbation modes has not been investigated, and poses
promising potential applications, it is therefore an additional
aim of the present work to extend this to the confined MHD
case incorporating the sidewall Shercliff layers. The ener-
getic response for high Ha, in addition to a quantification of
the dominant dissipation mechanisms affecting the evolution
of kinetic energy and the formation of flow structures will be
also investigated.

MODEL DESCRIPTION

Problem Definition and Mathematical Formulation

A fluid with electrical conductivity σ, kinematic viscosity
ν and density ρ, flows through a square duct with cross-
sectional width 2a. The electrically insulated vertical and
horizontal duct walls are respectively located at x = ±a and
y = ±a. A constant external homogeneous magnetic field
BBB000 = B0eee is imposed on the flow tangential to the vertical
sidewalls such that the unit vector eee ≡ 〈ex,ey,ez〉 = 〈0,1,0〉
(see figure 1). The flow is driven by a constant pressure gra-
dient ∇p with no-slip conditions applied on all solid bound-
aries. The MHD equations are written in the quasi-static,
low-magnetic number approximation. In this approxima-
tion, the magnetic field generated by the motion-induced cur-
rents of the conducting fluid in comparison to the externally
applied field B0 are small. Hence, the agglomerated mag-
netic field remains of nearly equal magnitude to B0. This
approximation is valid for target applications and in labo-
ratory experiments of moderate intensity and size (typically
liquid metals flowing under 1m/s in a domain smaller than
1m)(Krasnov et al., 2010; Smolentsev et al., 2010). Non-
dimensionalisation of the governing equations is achieved by
taking the proper scales for length a, pressure ρU2

0 , where U0
is the peak inlet velocity, time a/U0, magnetic field B0 and
lastly, for the electric potential aU0B0. It follows that the
dimensionless quasi-static momentum and continuity equa-
tions can be written as

∂VVV
∂t

+(VVV ·∇∇∇)VVV =−∇∇∇p+
1

Re
∇

2VVV +
Ha2

Re
( jjj×BBB000), (1)

∇∇∇ ·VVV = 0, (2)

where VVV (x,y,z, t) = 〈u,v,w〉 and jjj = −∇∇∇φ+VVV ×BBB000 are the
velocity and electric current density vectors, respectively.
Here φ is the electric scalar potential. The dimension-
less groups Re and Ha are respectively the Reynolds num-
ber, Re ≡ U0a/ν, representing the ratio of inertial to vis-
cous forces in the flow, and the Hartmann number, Ha ≡
aB0
√

σ/ρν, representing the ratio of electromagnetic to the
viscous forces in the flow. In the present work, Hartmann
numbers between 10 ≤ Ha ≤ 1000 are investigated which

significantly extends the range covered by Krasnov et al.
(2010). The aim being to bridge the gap between 3D and
Q2D models for transient growth analysis of optimal linear
amplifications. Here a fixed Reynolds number of Re = 5000
is used both for comparison reasons with existing literature,
but also as it is below the exponential instability limit found
for hydrodynamic Poiseuille flows.

Transient growth analysis

The transient growth of linear three-dimensional infinitesi-
mal perturbations of the form

[VVV p,φp, pp] (x,y,z, t) =
(
u′,v′,w′,φ′, p′

)
, (3)

to a streamwise independent two-dimensional steady-state
base flow

[VVV 0,φ0, p0] = (u(x,y),v(x,y),w(x,y),φ(x,y), p(z)), (4)

is conducted by tracking their energy amplification over a
finite time interval τ. The flow solution then takes the general
form

[VVV ,φ, p] = (VVV 0,φ0, p0)+(VVV p,φp, pp), (5)

with the perturbations being considered through the form of
decoupled normal Fourier modes

[VVV p,φp, pp] =
(
û, v̂, ŵ, φ̂, P̂

)
(x,y, t) · eikz, (6)

where k is a streamwise wavenumber. For brevity, the full
system of linearised equations describing the evolution of
these perturbed flows is not given. The reader may refer to
Krasnov et al. (2010) for a form consistent with this work.
The growth in perturbation kinetic energy over a given time
interval t = τ can be written as a ratio of volume integrals
over domain Ω of the standard L2 space inner products of
VVV p(t) at t = τ over the initial state at t = 0

G(τ) =

∫
Ω

VVV p(τ) ·VVV p(τ)dΩ∫
Ω

VVV p(0) ·VVV p(0)dΩ
. (7)

Here the adjoint evolution method outlined in Barkley et al.
(2007) is employed, where the introduction of a state-
transition operator A = eLt , where L is a linear operator, al-
lows for the time evolution of an arbitrary initial perturbation
VVV p to t = τ to be described by

VVV p(τ) = A(τ)VVV p(0). (8)

By further introducing an adjoint evolution operator A∗(τ) of
A , that evolves an equivalent adjoint variable VVV p

∗
τ

backwards
in time from t = τ to t = 0, (7) can be rewritten as

G(τ) =

∫
Ω

VVV p(0) ·A∗(τ)A(τ)VVV p(0)dΩ∫
Ω

VVV p(0) ·VVV p(0)dΩ
. (9)

In this form, the optimal disturbance mode leading to
G(τ)max is found through the determination of the leading
eigenvalue and corresponding eigenvector of the operator
A∗A . This optimal perturbation mode presents as the real
and orthonormal right singular vector determined through the
singular value decomposition of A∗A ; which is solved using
an implicitly restarted Arnoldi iterative method. The aim of
the optimal linear growth portion of the present work can be
formally written as

G(τ)max = max
VVV p(0)

∫
Ω

VVV p(0) ·A∗(τ)A(τ)VVV p(0)dV∫
Ω

VVV p(0) ·VVV p(0)dV
. (10)
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The global maximum amplification Gmax occurs at the opti-
mal time interval τopt having streamwise wavenumber kopt.
From a physical perspective, Gmax defines the global max-
imum growth in kinetic energy due to initial optimal linear
conditions VVV p,opt(0) evolved to time τopt. This is referred to
as the optimal growth as it is the largest achievable gain in
energy for all spatial wavenumbers k for a given Re and Ha
dependent flow regime.

Numerical Methodology

A spatial high order nodal spectral element method incor-
porating a third-order time integration scheme based on
backward-differencing is employed to discretise the govern-
ing equations and implement the transient growth analysis
methodology. The domain is meshed using an average of 425
quadrilateral macro-elements with internally applied Lan-
grangian polynomial shape functions defined as

Li(ξ) =
Np+1

∏
g=1,g6=i

ξ−ξg

ξi−ξg
, (11)

where ξ is the spatial coordinate, i and g the nodal indices,
and Np the polynomial order, which is varied to control spa-
tial resolution in the spanwise x-y cross-plane. The nodal
points within each element are spaced and weighted to cor-
respond to Gauss-Legendre-Lobatto quadrature integration
points, which reduce computational costs by forming diago-
nal mass matrices and leading to exponential spatial conver-
gence. A graded element distribution was employed towards
all solid surfaces to resolve regions that experience large flow
gradients. The spacing of macro elements are scaled with re-
spect to the Ha dependent boundary layer thickness; ensur-
ing that a minimum of 8 macro elements span their height.
Boundary conditions consist of zero velocities on all solid
surfaces, a fully developed inlet velocity profile, along with
high order pressure field Neumann boundary conditions on
all domain perimeters to maintain third-order time accuracy
(Karniadakis et al., 1991).

A spectral-element-Fourier method analogous to the cylin-
drical formulation constructed in Blackburn and Sherwin
(2004) is employed to capture three-dimensional flow varia-
tion in the streamwise z-direction. This method is well suited
to simulation of flows where the geometry can be arbitrarily
complex in a cross-plane but is infinite or periodic in an or-
thogonal direction (Karniadakis, 1990; Blackburn and Sher-
win, 2004; Sheard et al., 2009; Vo et al., 2015). The velocity,
pressure and electric potential fields are decomposed using
this Fourier expansion in z with m streamwise modes such
that 

u(x,y,z, t)
v(x,y,z, t)
w(x,y,z, t)
p(x,y,z, t)
φ(x,y,z, t)

=
m−1

∑
j=0


um(x,y, t)
vm(x,y, t)
wm(x,y, t)
pm(x,y, t)
φm(x,y, t)

eikmz (12)

where k = 2π/Lz is the associated wavenumber in the z di-
rection, and Lz is the periodicity length of the domain also in
the z direction. The number of Fourier modes determines
the spatial resolution in the orthogonal streamwise direc-
tion. The basic flow solution described by the fundamen-
tal Fourier mode was validated against the analytical solu-
tion for fully developed MHD flow as developed by Hunt
and Stewartson (1965). For the transient growth analysis, the
linearised equations require the construction of a single non-
zero Fourier mode in the z-direction to completely define the

eigenmodes as per (6). Streamwise wavenumbers are inves-
tigated between 0≤ k ≤ 80, with the local maxima resolved
to an accuracy of at least 0.1. To ensure that the optimal
growths were captured sufficiently, and a monotonic decay
in amplifications were achieved at higher τ, the analysis was
conducted over time intervals extending to τ = 5τopt. Eigen-
value convergence of better than 0.01% was ensured for all
the values presented in this paper. The linearised component
of this solver has also been previously verified and imple-
mented in works such as Hussam et al. (2012) and Tsai et al.
(2016).

Local mesh refinement (h-refinement), shape function poly-
nomial degree refinement (p-refinement) and Fourier mode
refinement (where applicable) are used in ensuring grid in-
dependence and the convergence of the viscous drag coeffi-
cient Cd and the L2 norm. A polynomial order of Np = 8
was deemed sufficient with a convergence of better than
0.3% achieved for all reference parameters. The minimum
wavenumber (and in turn the maximum duct length Lz dis-
cretisation) required for the 3D simulations incorporating the
non-linear MHD governing equations is given by the respec-
tive k of the optimal mode used to seed the base flow. For
all but the highest initial perturbation energies (10−6 ≤ Ep ≤
10−3), 8 Fourier modes were found to be satisfactory for re-
solving the flow dynamics. For the highest perturbation case
(Ep = 10−2), 32 Fourier modes were required in congruence
with an additional anti-aliasing method coming in the form of
the two-thirds low-pass filtering technique outlined in Orszag
(1971).

RESULTS AND DISCUSSION

Optimal Linear Transient Growth

The optimal modal gain in perturbation kinetic energy as a
function of Hartmann number are presented and discussed
in this section. The global maximum amplification Gmax
for 10 ≤ Ha ≤ 1000 are provided in figure 2. Here, the
results from Krasnov et al. (2010) and Pothérat (2007) are
also shown for comparison. Transient growth was found to
occur for all Ha present in this study, however, the magni-
tude of these amplifications is progressively suppressed with
increasing Hartmann number. The monotonic reduction in
energy growth is most likely due to the increased Joule dissi-
pation found with higher magnetic field strengths. For 10 ≤
Ha≤ 100 the global maximum amplification is found in the
present work to follow the trend Gmax ≈ 11.45×103Ha−1.6.
This is in close agreement with the Gmax ≈ 8.8×103Ha−1.5

relationship obtained by the optimal growth analysis in Kras-
nov et al. (2010) over the limited range of 10 ≤ Ha ≤ 50 as
shown in figure 2. This also serves as further validation for
the numerical framework used in this study.

For 150 ≤ Ha ≤ 1000, the rate of change of Gmax lessens
with increasing Hartmann number. The scaling and growth
rate predictions in this regime demonstrate a remarkable con-
sistency with the SM82 model results from Pothérat (2007).
For this higher Ha regime, the global maximum amplifica-
tion recovers an approximate −1/3 power scaling of Gmax ≈
25× 103Ha−0.37. This is in stark contrast to the behaviour
observed at lower field strengths Ha ≤ 150, where there is
a significant deviation between the scaling and energy gains
predicted by both 3D and Q2D models. The mechanism pro-
ducing maximum transient amplifications in low-Ha MHD
flows and 3D Poiseuille flows result from the coupling of
modes both invariant and variant in the vertical direction.
These modes are the respective MHD equivalent of the well
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Figure 2: Global maximum amplifications as a function of Hart-
mann number. Here, pre-existing transient growth anal-
ysis data using a SM82 model (Pothérat, 2007) (dash-
dotted line) and quasi-static MHD analysis (Krasnov
et al., 2010) (dashed line) are plotted for comparison
against current results (orange line, grey markers).

known Orr–Sommerfeld and Squire modes found in hydro-
dynamic flows. Being of Q2D nature, the SM82 model can
only combine the two-dimensional Orr–Sommerfeld equiva-
lent modes for energy amplification. As the present findings
show such strong alignment of the 3D duct optimal growths
predictions for 150 ≤ Ha ≤ 1000 with the SM82 model,
this suggests that for adequately large field strengths (here
Ha ≥ 150), suppression of the streamwise invariant modes
has occurred to allow the SM82 model to be an excellent
predictor of optimal linear growth. Conversely, the coupling
between streamwise variant and invariant modes plays a fun-
damental part in the enhancement of transient amplifications
for Ha ≤ 150; leading to the deviation between predicted
growth rates at smaller Ha.

This explanation for the development of two well defined
scaling regimes are further illustrated through a qualitative
analysis of the perturbation field structures. The evolution
of the eigenvector fields to time of maximum energy gain
τopt for Ha = 10,100,150 and 600 are visualised via iso-
surfaces of the spanwise component (x-z plane) of vortic-
ity in figure 3. The perturbation fields for low to moderate
Ha (figures 3 (a) and (b)) form complex overlapping homo-
thetic structures within the sidewall layers. These stream-
wise aligned cigar-shaped modes are consistent with those
producing maximum transient amplification in pure hydro-
dynamic flows (Pothérat, 2007). As Ha is increased in the
first scaling regime 10 ≤ Ha ≤ 100, the number of rolls in
the vertical y direction also increase but maintain well de-
fined periodicity. These disturbance modes also become in-
creasingly flattened and localised within the thinning Sher-
cliff layers in combination with a significant decrease in the
optimal streamwise wavenumber.

In the second regime between 150≤Ha≤ 1000, periodicity
in y is lost, with a breakdown of the streamwise vortices oc-
curring, as highlighted in figures 3(c,d). The flow becomes
increasingly invariant in the magnetic field direction, such
that by Ha = 600 only remnants of streamwise variation of
vorticity remain, which are predominantly confined to the
corner regions of the duct. The two-dimensionalisation of
the optimal modes, and the relative invariance of the vortic-

ity disturbance field in figures 3(c,d) 3(c,d), helps to illustrate
the suspected diminishing influence of the Squire equivalent
modes on the overall transient amplification of energy for
Ha ≥ 150. From a numerical methodology perspective this
can have quite significant and meaningful implications. As
Hartmann numbers in fusion reactor applications are typi-
cally quite large (O(103)), the ability of the SM82 model
to accurately predict the dominant transient amplifications
mechanisms at these larger field strengths allows for mod-
elling to be conducted at significantly reduced computational
costs. The reason being that the thin Hartmann layers do not
require resolving when employing this Q2D model.

Nonlinear Temporal Evolution of Optimal Perturba-
tions at High Hartmann Numbers

A three-dimensional basic flow seeded with optimal linear
perturbations at varying initial energies for Ha = 600 and Re
= 5000 will be analysed in this section. These flow regime
parameters were chosen with a view towards representative
magnetic field strengths seen in industrial applications (Smo-
lentsev et al., 2010). The energy of the perturbation field is
given as a relative fraction of the unperturbed base flow en-
ergy, and defined using the ratio of volume integrals

E(t) =
∫

Ω
VVV p ·VVV p dΩ∫

Ω
VVV 0 ·VVV 0 dΩ

. (13)

The initial seeding energy of the optimal perturbation modes
is defined as Ep ≡ E(0), where 10−6 ≤ Ep ≤ 10−2 is pre-
sented here. The energy amplification of the perturbed flow
can thus be measured using the temporal relation

Gn(t) =
E(t)
Ep

. (14)

The energetic response due to the seeding of the base flow
as a function of time is illustrated in figure 4. For the small-
est initial seeding energy Ep = 10−6, a very strong alignment
with the temporal energy evolution modelled using the lin-
earised governing equations is seen. As the seeding energy
is increased, the magnitude of amplification is successively
diminished in conjunction with a shortening of the time pe-
riod at which the maximum occurs. For the maximum seed-
ing energy Ep = 10−2, no energy gain is observed for any
time periods measured. For Ep ≤ 10−3, only single peaks in
energy amplification are detected before a monotonic decay
presents as t→∞. For a better understanding of the flow dy-
namics during these stages of transient growth, we introduce
quantitative measures for viscous and magnetic dissipation,
which are respectively defined as

ε = 2ν∑
kkk

k2 [VVV (kkk) ·VVV (−kkk)] , (15)

µ =
σ

ρ
∑
kkk

(BBB000 · kkk)
k2 [VVV (kkk) ·VVV (−kkk)] . (16)

Here kkk is the wavenumber vector associated with a 3D
Fourier decomposition. This is achieved through implement-
ing a fast Fourier transform technique on discretely sampled
data in the x-y plane in conjunction with a modal expansion
using (12). The total viscous and magnetic dissipation nor-
malised by their respective initial seeding energies are plot-
ted as a function of time in figures 5 and 6, respectively. For
10−6 ≤ Ep ≤ 10−3, a significant increase in viscous dissipa-
tion is observed immediately after the base flow is seeded
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(a) Ha = 10

(b) Ha = 100

(c) Ha = 150

(d) Ha = 600

Figure 3: Vorticity iso-surfaces of the eigenvector fields produc-
ing the maximum transient amplification Gmax evolved
to τopt for Ha = 10,100,150 and 600 at Re = 5000.
Blue and orange contours represent positive and negative
spanwise vorticity, respectively. Contour levels are ad-
justed to approximately 90% of the maximum magnitude
of vorticity. The flow is from left to right in the positive z-
direction, with the magnetic field orientated vertically in
the positive y-direction. For clarity, the vorticity is only
plotted for 0≤ x≤ 1.

Figure 4: Temporal evolution of energy amplification due to seed-
ing of the unperturbed base flow with the optimal dis-
turbance mode corresponding to Ha = 600 at Re = 5000
for initial perturbation energies 10−6 ≤ Ep ≤ 10−2. Here
the predicted growth rate using the linearised governing
equations is also plotted (dashed line).

with the optimal mode. For 10−6 ≤ Ep ≤ 10−4, the peak in
both magnetic dissipation and viscous dissipation appears to
be strongly correlated with the corresponding time of max-
imum amplification seen in figure 4. For Ep = 10−3 only
the latter is strongly correlated, with no relationship seen for
Ep = 10−2. At t ≈ 0.2, a sharp increase in ε and a corre-
sponding decrease in µ is observed for the highest energy
Ep = 10−2 case. At this point in time, the ratio µ/ε ≈ 1.1
indicates that viscous dissipation is contributing in almost
equal measure to the total dissipation rates in the flow. How-
ever, magnetic dissipation remains the dominant energy loss
mechanism for all Ep and t investigated here. After reaching
their respective peaks in dissipation rates, both ε and µ are
observed to decay (not necessarily monotonically) as t→ ∞.

It is interesting to note here that as the initial seeding en-
ergy approaches the infinitesimal limit described by the lin-
earised equations, the time rate of change of both dissipa-
tion mechanisms converge. In other words, ∂ε/∂t ≈ ∂µ/∂t
as Ep→ 10−∞. It also appears that as the initial seeding en-
ergy is increased, and the relative importance of nonlinear
terms in the solution in turn grows, a weakening of magnetic
dissipation and conversely strengthening of viscous dissipa-
tion is produced. A partial explanation for the difference
is through the larger cascade of energy transfer to higher
Fourier mode wavenumbers seen for greater seeding ener-
gies (not published here). Magnetic dissipation acts equally
on all scales, whereas the dissipating effects of viscosity are
more pronounced for higher k. Hence, nonlinearity is seen
to promote transfer of energy to high wavenumbers, where
viscous damping is dominant, rather than dissipating energy
through Joule damping at larger scales.

For further quantification of the dominant flow structures
leading to observed energy growth and dissipative trends, we
introduce a flow anisotropy measure

G =
G1 +G2

2
, (17)

where G1 and G2 are calculated using the normalised mean-
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Figure 5: Temporal evolution of normalised viscous dissipation
due to seeding of the unperturbed base flow with the op-
timal disturbance mode corresponding to Ha = 600 at
Re = 5000 for initial perturbation energies 10−6 ≤ Ep ≤
10−2.

square velocity gradients

G1 =
〈(∂u/∂y)2〉

2〈(∂u/∂x)2〉
and G2 =

2〈(∂v/∂y)2〉
〈(∂v/∂x)2〉

. (18)

These anisotropy coefficients characterises the difference
between the magnitudes of flow velocity derivatives taken
along (∂/∂y) and across (∂/∂x) the magnetic field direction.
They tend towards unity as a flow reaches a purely isotropic
state, and towards zero in magnetic field direction indepen-
dent anisotropic flow (Schumann, 1976). The primary cause
for the changes in these derivatives are known to be due to
the Joule dissipative effects found in MHD flows (Vorobev
et al., 2005). For 3D anisotropic flows, both coefficients in
(18) tend towards one another. Hence, the average of the two,
which are considered in (17), provide a good measure for the
overall level of anisotropy in the flow.

The time history of (17) is plotted for varying optimal mode
seeding energies in figure 7. Immediately onwards from t =
0, a rapid increase in G is observed for all Ep cases. Mul-
tiple peaks in flow isotropy are detected for all cases, where
the initial peak occurs at a slightly delayed time interval in
comparison to the time of maximum energy gain seen in fig-
ure 4. It is important to note that the measured decrease in
flow anisotropy is small for all cases

(
O(10−2)−O(10−1)

)
.

The flow remains dominated by anisotropic structures, yet
has small but finite intermittent bursts of relative isotropy.
For 10−4 ≤ Ep ≤ 10−2 the secondary peaks in G are equal
to or greater than the initial peak magnitude. In contrast, for
lower seeding energies Ep ≤ 10−5, the degree of anisotropy
increases after reaching a minimum at the first initial max-
ima seen in figure 7. It is interesting to note here that al-
though Joule dissipation remains strong for all Ep, as seen
in figure 6, this does not necessitate the temporal smooth-
ing of the velocity field so that a monotonic trend towards
a purely anisotropic state occurs. Exploiting this behaviour
could pose as useful for future investigations into eliciting
further transient growth and, potentially, instabilities.

CONCLUSION

The global maximum transient amplifications of an electri-
cally conducting fluid under the influence of a transverse

Figure 6: Temporal evolution of normalised magnetic dissipation
due to seeding of the unperturbed base flow with the op-
timal disturbance mode corresponding to Ha = 600 at
Re = 5000 for initial perturbation energies 10−6 ≤ Ep ≤
10−2.

Figure 7: Temporal evolution of the degree of anisotropy due to
seeding of the unperturbed base flow with the optimal
disturbance mode corresponding to Ha = 600 at Re =
5000 for initial perturbation energies 10−6 ≤ Ep ≤ 10−2.

magnetic field were investigated. A range of Hartmann num-
bers for 10≤ Ha≤ 1000 were studied at a fixed Re = 5000.
It was shown that two regimes exists for scaling of maximum
transient growth amplification; when perturbation structures
are dominated by 3D modes a scaling of Gmax ∝ Ha−1.6 for
10≤ Ha≤ 100 was found, and Gmax ∝ Ha−0.37 in the range
of 150 ≤ Ha ≤ 1000 for when optimal disturbances become
predominantly Q2D. Through comparison with existing lit-
erature, the SM82 model for Q2D MHD flow was found to
be a valid predictor of optimal linear growths in this regime.

A subsequent investigation into seeding of an optimal mode
corresponding to a high Ha regime into an unperturbed base
flow to study the dynamic response was also conducted. At
Ha = 600 and Re = 5000, it was determined that the initial
energy of the perturbation modes plays a fundamental role in
not only in the transient growth of energy, but also in the
dominant dissipation and anisotropy forming mechanisms.
No energy amplification above the linear prediction was ob-
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served for any nonlinear case. As the seeding energy ampli-
tude reduces in magnitude, it more closely recovers the linear
growth predictions. Additionally, the time at which their re-
spective maxima in energy occurs is closely correlated with
the time of maximum dissipation. However, this time interval
is increasingly shortened as the perturbation seeding energy
magnitude grows. It was found that no growth occurs for
Ep = 10−2, which is in congruence with a sharp increase in
viscous dissipation and combined decrease in magnetic dis-
sipation. The likely reason being that as the initial energy is
increased, and nonlinear terms in the solution become more
significant, a greater transfer of energy to larger wavenum-
bers k tends to occur. Lastly, it was shown that the flow is
dominated by anisotropy for all t and Ep, but experiences
intermittent bursts of increased isotropy.
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